首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1338篇
  免费   176篇
  国内免费   201篇
化学   805篇
晶体学   37篇
力学   58篇
综合类   15篇
数学   21篇
物理学   779篇
  2025年   6篇
  2024年   37篇
  2023年   31篇
  2022年   51篇
  2021年   70篇
  2020年   79篇
  2019年   50篇
  2018年   51篇
  2017年   86篇
  2016年   85篇
  2015年   96篇
  2014年   98篇
  2013年   103篇
  2012年   88篇
  2011年   91篇
  2010年   57篇
  2009年   61篇
  2008年   65篇
  2007年   62篇
  2006年   59篇
  2005年   42篇
  2004年   45篇
  2003年   33篇
  2002年   34篇
  2001年   32篇
  2000年   30篇
  1999年   12篇
  1998年   15篇
  1997年   23篇
  1996年   22篇
  1995年   18篇
  1994年   11篇
  1993年   14篇
  1992年   12篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
排序方式: 共有1715条查询结果,搜索用时 15 毫秒
161.
    
The selection of either an oxidising or inert ambient during high temperature annealing is shown to affect dopant activation and electron–hole recombination in boron implanted silicon samples. Samples implanted with B at fluence between 3 × 1014 cm–2 to 3 × 1015 cm–2 are shown to have lower dopant activation after oxidation at 1000 °C compared to an equivalent anneal in an inert ambient. In addition, emitter recombination is shown to be up to 15 times higher after oxidation compared with an inert anneal for samples with equivalent passivation from deposited Al2O3 films. The observed increase in recombination for oxidised samples is attributed to the enhanced formation of boron‐interstitial defect clusters and dislocation loops under oxidising conditions. It is also shown that an inert anneal for 10 minutes at 1000 °C prior to oxidation has no significant impact on sheet resistance or recombination compared with a standard oxidation process.

  相似文献   

162.
163.
164.
165.
    
The distribution profile of Al implanted in crystalline Ge has been investigated by micro‐Raman spectroscopy. Using different excitation laser lines, corresponding to different optical penetration depths, the Al concentration at different depths beneath the sample surface has been studied. We have found a strong correlation between the intensity of the Al–Ge Raman peak at ~370 cm−1, which is due to the local vibrational mode of substitutional Al atoms, and the carrier concentration profile, obtained by the spreading resistance profiling analysis. A similar connection has been also observed for both shape and position of the Ge–Ge Raman peak at ~300 cm−1. According to these experimental findings, we propose here a fast and nondestructive method, based on micro‐Raman spectroscopy under different excitation wavelengths, to estimate the carrier concentration profiles in Al‐implanted Ge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
166.
167.
    
A study on the effect of Mg doping in quantum‐well (QW) layers on dual‐wavelength light‐emitting diodes (LEDs) was performed. A series of dual‐wavelength LEDs with different Mg doping conditions were fabricated. According to electroluminescence measurement, as the Mg doping concentration and regions varied, improved hole distribution and bottom‐QW emission was achieved. This result is in accord with APSYS simulation. In addition, the sample with Mg doping in all QWs showed the highest output power and smallest efficiency droop. It is concluded that Mg doping in QWs could ameliorate the optical and electrical properties of dual‐wavelength LEDs.  相似文献   
168.
    
In thin film devices such as light‐emitting diodes, photovoltaic cells and field‐effect transistors, the processes of charge injection, charge transport, charge recombination, separation and collection are critical to performance. Most of these processes are relevant to nanoscale metal and metal oxide electrode–organic material interfacial phenomena. In this report we present a unique method for creating tailored one‐dimensional nanostructured silver, tin and/or zinc substituted indium oxide electrode structures over large areas. The method allows production of high aspect ratio nanoscale structures with feature sizes below 100 nm and a large range of dimensional tunability. We observed that both the electronic and optical properties of these electrodes are closely correlated to the nanostructure dimensions and can be easily tuned by control of the feature size. Surface area enhancement accurately describes the conductivity studies, while nanostructure dependent optical properties highlight the quasi‐plasmonic nature of the electrodes. Optimization of the nanostructured electrode transparency and conductivity for specific opto‐electronic systems is expected to provide improvement in device performance.
  相似文献   
169.
标准CMOS工艺载流子注入型三端Si-LED的设计与研制   总被引:2,自引:0,他引:2  
采用无锡华润上华(CSMC)0.5μm标准CMOS工艺,设计并制备了一种新型的高发光功率载流子注入型三端Si-LED器件.该器件在p型衬底上进行n+掺杂,与p衬底形成两个相对的n+p结,其中一个结正向偏置,发出峰值波长在1 100 nm附近的红外光;另一个结同样正偏,作为注入结对发光进行调制.测试结果显示:第三端注入载流子明显增强了总体的发光功率,在10 mA偏置电流、3V调制电压下,可获得1 nW的光功率,与单结相比提高了两个数量级.由于工作电压低,该器件可与目前主流的CMOS工艺共电源单芯片集成,在光电集成领域具有一定的应用前景.  相似文献   
170.
    
The carrier transport in AlGaN light emission diode (LED) structures on Si‐substrates including an AlN multilayer (ML) buffer for reduction of defects was investigated using IV‐characteristics and admittance spectroscopy. Additionally, AlN on Si ML and AlN/AlGaN:Si on Si structures were grown and analyzed separately. The AlN‐ML/AlGaN:Si heterojunction, and the pn‐junction including the AlGaN/GaN multi quantum well (MQW)‐structure were identified. As the main space charge regions (SCRs) controlling the carrier transport through the ultraviolet‐light emission diode (UV‐LED) structure the Si‐substrate/AlN‐ML heterojunctions pointed out. The IV‐characteristic of the LED structure is described by the series resistance of the AlN‐ML and a parallel resistance with respect to the pn‐junction. Interface defect states and/or deep defects impact the series resistance. The carrier transport through the LED structure is controlled by a tunnel process described by a Fowler–Nordheim (FN)‐emission mainly through the AlN‐ML buffer forming the series resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号