首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6685篇
  免费   359篇
  国内免费   618篇
化学   2677篇
晶体学   54篇
力学   464篇
综合类   20篇
数学   338篇
物理学   4109篇
  2024年   5篇
  2023年   66篇
  2022年   74篇
  2021年   73篇
  2020年   122篇
  2019年   99篇
  2018年   102篇
  2017年   170篇
  2016年   214篇
  2015年   211篇
  2014年   350篇
  2013年   645篇
  2012年   312篇
  2011年   553篇
  2010年   402篇
  2009年   455篇
  2008年   453篇
  2007年   469篇
  2006年   380篇
  2005年   283篇
  2004年   294篇
  2003年   240篇
  2002年   243篇
  2001年   199篇
  2000年   200篇
  1999年   153篇
  1998年   146篇
  1997年   106篇
  1996年   84篇
  1995年   105篇
  1994年   73篇
  1993年   65篇
  1992年   73篇
  1991年   45篇
  1990年   23篇
  1989年   31篇
  1988年   27篇
  1987年   20篇
  1986年   13篇
  1985年   11篇
  1984年   13篇
  1983年   8篇
  1982年   9篇
  1981年   7篇
  1980年   9篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   6篇
  1973年   6篇
排序方式: 共有7662条查询结果,搜索用时 343 毫秒
991.
The solid-liquid phase transitions of Lennard-Jones clusters LJN (N=39–55) were simulated by a microcanonical molecular dynamics method using Lennard-Jones potential, and their thermodynamic quantities were calculated. The caloric curves of clusters (except N=42) have S-bend. To understand this behaviour, configurational and total entropies were evaluated, and dents on the entropy curves were taken as a sign of negative heat capacity. The heat capacities were evaluated for N=39–55 clusters using configurational entropy data. The potential energy distributions have bimodal behaviour for all clusters in the given range at the melting temperature. The distinct melting behaviour of LJ42 was explained by the topology of the potential energy surface by examining the isomer distributions at phase transitions for LJ39-LJ55. The isomer distributions were found to be a useful way to interpret this behaviour and melting dynamics in general. Melting temperature, latent heat and entropy change upon melting values were reported and are consistent with literature values and values calculated from bulk thermodynamic properties. The dependence of these quantities on the size of the clusters was examined and it is found that latent heat is the key quantity to determine the magic numbers.  相似文献   
992.
In 3-pulse ESEEM and the original 4-pulse HYSCORE, nuclei with large modulation depth (k approximately 1) suppress spectral peaks from nuclei with weak modulations (k approximately 0). This cross suppression can impede the detection of the latter nuclei, which are often the ones of interest. We show that two extended pulse sequences, 5-pulse ESEEM and 6-pulse HYSCORE, can be used as experimental alternatives that suffer less strongly from the cross suppression and allow to recover signals of k approximately 0 nuclei in the presence of k approximately 1 nuclei. In the extended sequences, modulations from k approximately 0 nuclei are strongly enhanced. In addition, multi-quantum transitions are absent which simplifies the spectra. General analytical expressions for the modulation signals in these sequences are derived and discussed. Numerical simulations and experimental spectra that demonstrate the higher sensitivity of the extended pulse sequences are presented.  相似文献   
993.
The equation of state and the stability of the helium-molecular hydrogen mixture at cryogenic temperature up to moderate pressure are studied by means of current molecular physics methods and statistical mechanics perturbation theory. The phase separation, segregation and hetero-coordination are investigated by calculating the Gibbs energy depending on the mixture composition, pressure and temperature. Low temperature quantum effects are incorporated via cumulant approximations of the Wigner-Kirkwood expansion. The interaction between He and H2 is determined by Double Yukawa potentials. The equation of state is derived from the hard sphere system by using the scaled particle theory. The behavior of the mixture over a wide range of pressure is explored with the excess Gibbs energy of mixing and the concentration fluctuations in the long wavelength limit. The theory is compared to cryogenic data and Monte-Carlo calculation predictions. Contrary to previous similar works, the present theory retrieves the main features of the mixture below 50 K, such as the critical point and the condensation-freezing curve, and is found to be usable well below 50 K. However, the method does not distinguish the liquid from the solid phase. The binary mixture is found to be unstable against species separation at low temperature and low pressure corresponding to very cold interstellar medium conditions, essentially because H2 alone condenses at very low pressure and temperature, contrary to helium.  相似文献   
994.
We present a theory for the phase behaviour of mixtures of charge-stabilised colloidal spheres plus interacting polymer chains in good and θ -solvents within the framework of free-volume theory. We use simple but accurate combination rules for the depletion thickness around a colloidal particle and for the osmotic pressure up to the semi-dilute concentration regime. Hence, we obtain expressions for the free energy for mixtures of charged colloidal particles and non-adsorbing interacting polymers. From that, we calculate the phase behaviour, and discuss its topology in dependence on the competition between the charge-induced repulsion and the polymer-induced attraction. The homogeneous mixture of colloids and polymers becomes more stabilised against demixing when increasing the electrostatic repulsion. This charge-induced stabilisation is strongest for small polymer-to-colloid size ratios and is more pronounced for charged colloids mixed with polymers in a good solvent than for polymers in a θ -solvent. For the weakly charged regime we find that the phase diagram becomes salt-concentration-independent in the protein limit for charged colloids plus polymers in a θ -solvent. The liquid window, i.e., the concentration regimes where a colloidal liquid exists, is narrowed down upon increasing the charge-induced repulsion. Also this effect is more pronounced when charged colloids are mixed with polymer chains in a good solvent. In summary, we demonstrate that the solvent quality significantly influences the phase behaviour of mixtures of charged colloids plus non-adsorbing polymers if the range of the screened electrostatic repulsion becomes of the order of the range of the depletion-induced attraction.  相似文献   
995.
We consider a crosslinked polymer blend that may undergo a microphase separation. When the temperature is changed from an initial value towards a final one very close to the spinodal point, the mixture is out equilibrium. The aim is the study of dynamics at a given time t, before the system reaches its final equilibrium state. The dynamics is investigated through the structure factor, S(q, t), which is a function of the wave vector q, temperature T, time t, and reticulation dose D. To determine the phase behavior of this dynamic structure factor, we start from a generalized Langevin equation (model C) solved by the time composition fluctuation. Beside the standard de Gennes Hamiltonian, this equation incorporates a Gaussian local noise, ζ. First, by averaging over ζ, we get an effective Hamiltonian. Second, we renormalize this dynamic field theory and write a Renormalization-Group equation for the dynamic structure factor. Third, solving this equation yields the behavior of S(q, t), in space of relevant parameters. As result, S(q, t) depends on three kinds of lengths, which are the wavelength q −1, a time length scale R(t) ∼ t 1/z , and the mesh size ξ *. The scale R(t) is interpreted as the size of growing microdomains at time t. When R(t) becomes of the order of ξ *, the dynamics is stopped. The final time, t *, then scales as t *ξ * z, with the dynamic exponent z = 6−η. Here, η is the usual Ising critical exponent. Since the final size of microdomains ξ * is very small (few nanometers), the dynamics is of short time. Finally, all these results we obtained from renormalization theory are compared to those we stated in some recent work using a scaling argument.  相似文献   
996.
We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin's evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or diversity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection wins this competition if mutations performed at birth are few enough, and thus the wild genotype dominates the steady-state population. By slowly increasing the average number m of mutations, however, the population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point, m < mc, evolutionary life is possible. The finite-size-scaling behaviour of this transition is exhibited for large enough “chromosome” lengths L, through lengthy computer simulations. One important and surprising observation is the L-independence of the transition curves, for large L. They are also independent on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more genetic information would demand an improved DNA copying machinery in order to keep the same total number of mutations per offspring.  相似文献   
997.
人体微环境调控可以通过材料本身性能的调控实现穿着凉爽舒适,对提高生活品质、减少碳排放具有重要价值.然而传统材料仅能单向地实现致冷或保温,同一材料实现致冷、保温双向功能,依然是本领域重要挑战和值得及时探索的方向.本文采用冷冻-解冻制备水凝胶与冷冻干燥技术,设计合成系列以聚乙烯醇和相变微胶囊为骨架的相变气凝胶.此类相变气凝...  相似文献   
998.
We obtain explicit expressions for the long range correlations in the ABC model and in diffusive models conditioned to produce an atypical current of particles. In both cases, the two-point correlation functions allow one to detect the occurrence of a phase transition as they become singular when the system approaches the transition.  相似文献   
999.
The problem of Group Testing is to identify defective items out of a set of objects by means of pool queries of the form “Does the pool contain at least a defective?”. The aim is of course to perform detection with the fewest possible queries, a problem which has relevant practical applications in different fields including molecular biology and computer science. Here we study GT in the probabilistic setting focusing on the regime of small defective probability and large number of objects, p→0 and N→∞. We construct and analyze one-stage algorithms for which we establish the occurrence of a non-detection/detection phase transition resulting in a sharp threshold, \(\overline{M}\), for the number of tests. By optimizing the pool design we construct algorithms whose detection threshold follows the optimal scaling \(\overline{M}\propto Np|\log p|\). Then we consider two-stages algorithms and analyze their performance for different choices of the first stage pools. In particular, via a proper random choice of the pools, we construct algorithms which attain the optimal value (previously determined in (Mézard and Toninelli, arXiv:0706.3104)) for the mean number of tests required for complete detection. We finally discuss the optimal pool design in the case of finite p.  相似文献   
1000.
A methodology is proposed for studying rare events in stochastic partial differential equations in systems that are so large that standard large deviation theory does not apply. The idea is to deduce the behavior of the original model by breaking the system into appropriately scaled subsystems that are sufficiently small for large deviation theory to apply but sufficiently large to be asymptotically independent from one another. The methodology is illustrated in the context of a simple one-dimensional stochastic partial differential equation. The application reveals a connection between the dynamics of the partial differential equation and the classical Johnson–Mehl–Avrami–Kolmogorov nucleation and growth model. It also illustrates that rare events are much more likely and predictable in large systems than in small ones due to the extra entropy provided by space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号