首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   722篇
  免费   55篇
  国内免费   112篇
化学   557篇
晶体学   9篇
力学   1篇
综合类   1篇
物理学   321篇
  2024年   6篇
  2023年   93篇
  2022年   27篇
  2021年   32篇
  2020年   30篇
  2019年   23篇
  2018年   29篇
  2017年   20篇
  2016年   25篇
  2015年   24篇
  2014年   23篇
  2013年   37篇
  2012年   29篇
  2011年   70篇
  2010年   31篇
  2009年   56篇
  2008年   61篇
  2007年   43篇
  2006年   36篇
  2005年   39篇
  2004年   49篇
  2003年   21篇
  2002年   15篇
  2001年   12篇
  2000年   16篇
  1999年   10篇
  1998年   5篇
  1997年   4篇
  1996年   9篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1990年   4篇
  1989年   1篇
  1985年   1篇
排序方式: 共有889条查询结果,搜索用时 296 毫秒
21.
The stability and electronic structure of perovskite hydrides ABH3 were investigated by means of first-principles density functional calculations. Two types of perovskite hydrides are distinguished: (1) When A and B are alkali and alkaline earth metals, the hydrides are ionic compounds with calculated band gaps of around 2 eV and higher. Their stability trend follows basically the concept of Goldschmidt's tolerance factor. (2) When A is one of the heavier alkaline earth metals (Ca, Sr, Ba) and B a transition metal, stable compounds ABH3 result only when B is from the Fe, Co, or Ni groups. This stability trend is basically determined by effects associated with d band filling of both the transition metal and the hydride. In contrast to group (1) perovskites, the transition metal-containing compounds are metals. The synthesis of CaNiH3 and its structure determination from CaNiD3 is reported. This compound is a type (2) perovskite hydride with a fully occupied hydrogen position (CaNiD3: a=3.551(4) Å, dNi-D=1.776(2) Å). Its stability is discussed with respect to transition metal hydrides with complex anions (e.g., Mg2NiH4, Na2PdH2, Sr2PdH4).  相似文献   
22.
Manganites with a spinel structure MMn2O4 (M = Co, Cu, Zn, Mo) and M1 0.5M2 0.5 Mn2O4 (M = Co, Cu, Zn, Mg) have been synthesized and tested in the catalytic oxidation of CO, C3H6, and ethylbenzene. The dependence of the catalytic activity of the manganites on the nature of the cation has been established. The spinels containing transition metal ions (Cu, Co) are more active. A relation between catalytic and adsorption properties of manganites has been established. The participation of the lattice oxygen in the oxidation of CO to CO2 has been found. The mechanism of the oxidation is discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No, 11, pp, 2686–2669. November, 1996.  相似文献   
23.
Magnesium substitution in Nd0.7Sr0.3MnO3 has been studied by neutron powder diffraction. Polycrystalline samples of nominal compositions Nd0.7Sr0.3Mn1−yMgyO3 with y=0.0, 0.1, 0.2 and 0.3 were synthesized by the standard solid-state reaction method. Rietveld refinements of the neutron powder diffraction data showed that all samples had distorted perovskite structure of orthorhombic symmetry. Mg initially preferred to substitute for Nd and only at Mg concentration greater than 0.1, a substantial substitution for Mn occurred. Our study also showed that Mg-substitution did not change the crystal structure of Nd0.7Sr0.3MnO3.  相似文献   
24.
The preferential formation of a pyrochlore structure is a knotty problem in the preparation of Pb(Zn1/3Nb2/3)O3 (PZN)-based thin film materials and its presence is significantly detrimental to the dielectric and piezoelectric properties. In this study, 40 mol% of PZN was replaced with Pb(Mg1/3Nb2/3)O3 (PMN) for obtaining a perovskite composition around a morphotropic phase boundary (MPB), (1−x)(0.6PZN-0.4PMN)-xPT ((1−x)PZMN-xPT, PT: PbTiO3) where x = 0.23. The thin films with this composition were prepared with a polyethylene glycol (PEG) modi-fied sol-gel method on LaAlO3 substrates. The microstructural evolution of the films on heat treatment was examined with X-ray diffraction. With the aid of PEG, the formation of the pyrochlore phase was suppressed and the perovskite phase formed directly from the amorphous gel film. The multilayer films with a thickness around 0.25 μm showed a single perovskite phase without any detectable pyrochlore structure. Microscopic images showed uniform grain size of a few tens of nanometers. The role of the polymer dramatically promoting the perovskite phase was investigated with the aid of X-ray photoelectron spectroscopy and thermal analysis. The dielectric constant of the obtained film was 4160 at 1 kHz. The film demonstrated typical ferroelectric hysteresis loops and exhibited excellent piezoelectric performance.  相似文献   
25.
Ternary lanthanide scandates (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho) have been synthesized at ambient pressure. Their structure has been investigated at room temperature by Rietveld analysis of powder X-ray diffraction data. The Ln-scandates are orthorhombic perovskites, adopting space group Pbnm (? 62), ab≈√2ap, c≈2ap, Z=4. Heavy lanthanides (Er-Lu), and Y do not form perovskites at ambient conditions. Compositionally driven phase transitions were not observed. The unit-cell parameters decrease with increasing ScO6 octahedron rotation and atomic number of the Ln cation. In common with lanthanide orthoferrites, the uniform structural evolution is interrupted at the middle-heavy part of the lanthanide sequence. This is probably due to an interplay between: (i) enlargement of the ScO6 octahedra relative to BO6 in other perovskites (e.g., FeO6 in GdFeO3); (ii) reduction in size of the first coordination sphere of Ln3+ coincident with the lanthanide contraction; (iii) coincident expansion of the second coordination sphere due to screening effects of OI1 on OI2, and entry of Sc to the lanthanide coordination sphere; (iv) complex mixing between oxygen and lanthanide lanthanide f- and scandium d-orbitals. In the series studied, Ln3+ are in eight-fold coordination (tetragonal antiprism), and are considerably displaced from the center of the LnO8 polyhedron along [001]. Evolution of the crystallochemical characteristics through the Ln orthoscandate series is complex due to both the antipathetic distortions of A- and B-site coordination polyhedra and interaction of the orbitals of oxygen, Ln and Sc. Empirically obtained limits of Goldschmidt and observed viiito tolerance factors for ternary LnBO3 compounds adopting the Pbnm structure are 0.795 and 0.841, respectively.  相似文献   
26.
New phases which arise from partial substitution of Ti4+ by Cr3+ and Li+ of the compound La2/3TiO3 have been obtained, giving rise to the series La1.33LixCrxTi2−xO6 (x=0.66, 0.55 and 0.44). These phases adopt a perovskite-type structure as deduced from their structural characterization. Rietveld's analyses of neutron diffraction data show that it is orthorhombic (S.G. Pbnm) with ordered domains. Conductivity has been examined by complex impedance spectroscopy and it increases with increasing lithium and chromium content. These materials behave as mixed conductors with low activation energies. Magnetic susceptibility variation with temperature shows antiferromagnetic interactions at the lowest temperatures.  相似文献   
27.
Single phase perovskite-based rare earth cobaltates (Ln1−xSrxCoO3−δ) (Ln=La3+, Pr3+, Nd3+, Sm3+, Gd3+, Dy3+, Y3+, Ho3+, Er3+, Tm3+ and Yb3+; 0.67?x?0.9) have been synthesized at 1100°C under 1 atmosphere of oxygen. X-ray diffraction of phases containing the larger rare earth ions La3+, Pr3+ and Nd3+ reveals simple cubic structures; however electron diffraction shows orientational twinning of a local, tetragonal (I4/mmm; ap×ap×2ap) superstructure phase. Orientational twinning is also present for Ln1−xSrxCoO3−δ compounds containing rare earth ions smaller than Nd3+. These compounds show a modulated intermediate parent with a tetragonal superstructure (I4/mmm; 2ap×2ap×4ap). Thermogravimetric measurements have determined the overall oxygen content, and these phases show mixed valence (3+/4+) cobalt oxidation states with up to 50% Co(IV). X-ray diffraction data and Rietveld techniques have been used to refine the structures of each of these tetragonal superstructure phases (Ln=Sm3+-Yb3+). Coupled Ln/Sr and oxygen/vacancy ordering and associated structural relaxation are shown to be responsible for the observed superstructure.  相似文献   
28.
29.
Perovskite oxides of the Ln0.5A0.5MnO3 (Ln=lanthanide, A=Sr, Ca) family have been investigated for the thermochemical splitting of H2O and CO2 to produce H2 and CO respectively. The amounts of O2 and CO produced strongly depend on the size of the rare earth ions and alkaline earth ions. The manganite with the smallest rare earth possessing the highest distortion and size disorder as well as the smallest tolerance factor, gives out the maximum amount of O2, and, hence, the maximum amount of CO. Thus, the best results are found with Y0.5Sr0.5MnO3, which possesses the highest distortion and size disorder. Y0.5Sr0.5MnO3 shows remarkable fuel production activity even at the reduction and oxidation temperatures as low as 1200 °C and 900 °C, respectively.  相似文献   
30.
Partial substitution of cations and anions in perovskite-type materials is a powerful way to tune the desired properties. The systematic variation of the cations size, the partial exchange of O2− for N3− and their effect on the size of the optical band gap and the thermal stability was investigated here. The anionic substitution resulted in the formation of the orthorhombic perovskite-type oxynitrides Mg0.25Ca0.65Y0.1Ti(O,N)3, Ca1-xYxZr(O,N)3, and Sr1–xLaxZr(O,N)3. A two-step synthesis protocol was applied: i) (nano-crystalline) oxide precursors were synthesized by a Pechini method followed by ii) ammonolysis in flowing NH3 at T = 773 K (Ti) and T = 1273 K (Zr), respectively. High-temperature synthesis of such oxide precursors by solid–state reaction generally resulted in phase separation of the different A-site cations. Changes of the crystal structures were investigated by Rietveld refinements of the powder XRD data, thermal stability by DSC/TG measurements in oxygen atmosphere, oxygen and nitrogen contents by O/N analysis using hot gas extraction technique, and optical band gaps by photoluminescence spectroscopy. By moving from Mg0.25Ca0.65Y0.1Ti(O,N)3 via Ca1–xYxZr(O,N)3 to Sr1–xLaxZr(O,N)3, the degree of tilting of the octahedral network is reduced, as observed by an increase in the BXB angles caused by the simultaneously increasing effective ionic radius of the A-site cation(s). In general, increasing substitution levels on the A-site (Y3+ and La3+) are accompanied by an enhanced replacement of O2− by N3−. In all three systems, this anionic substitution resulted in a reduction of the optical band gap by approximately 1 eV (Ti) and up to 2.1 eV (Zr) compared to the respective oxides. For Mg0.25Ca0.65Y0.1Ti(O,N)3 an optical band gap of 2.2 eV was observed, appropriate for a solar water splitting photocatalyst. The Zr-based oxynitrides required a by a factor of 2 higher nitrogen contents to significantly reduce the optical band gap and the measured values of 2.9 eV–3.2 eV are larger compared to the Ti-based oxynitride. Bulk thermal stability was revealed up to T = 881 K. In general, the thermal stability decreased with increasing substitution levels due to an increasing deviation from the ideal anionic composition as demonstrated by O/N analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号