首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
  国内免费   2篇
化学   42篇
物理学   27篇
  2023年   1篇
  2022年   8篇
  2021年   9篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
21.
《Analytical letters》2012,45(8):1473-1488
In this paper, metabolic fingerprints were obtained from 102 nasopharyngeal carcinoma (NPC) patients and 107 healthy adults by gas chromatography-mass spectrometry (GC/MS). Partial least squares-discriminant analysis (PLS-DA) has revealed a pattern recognition discriminating the patients from controls, which sensitivity is 89.72% (96/107) and specificity is 85.29% (87/102). Furthermore, double-blind experiment was carried out and satisfactory results were obtained (total correct rate 87.30%). In addition, metabolites that most strongly influence this separation were obtained. The results indicated that a metabonomic approach is feasible and efficient and deserves further evaluation as a potential novel strategy for the detection of nasopharyngeal carcinoma.  相似文献   
22.
Corn is one of the most cultivated crops all over world as food for humans as well as animals. Optimized agronomic practices and improved technological interventions during planting, harvesting and post-harvest handling are critical to improving the quantity and quality of corn production. Seed germination and vigor are the primary determinants of high yield notwithstanding any other factors that may play during the growth period. Seed viability may be lost during storage due to unfavorable conditions e.g. moisture content and temperatures, or physical damage during mechanical processing e.g. shelling, or over heating during drying. It is therefore vital for seed companies and farmers to test and ascertain seed viability to avoid losses of any kind. This study aimed at investigating the possibility of using hyperspectral imaging (HSI) technique to discriminate viable and nonviable corn seeds. A group of corn samples were heat treated by using microwave process while a group of seeds were kept as control group (untreated). The hyperspectral images of corn seeds of both groups were captured between 400 and 2500 nm wave range. Partial least squares discriminant analysis (PLS-DA) was built for the classification of aged (heat treated) and normal (untreated) corn seeds. The model showed highest classification accuracy of 97.6% (calibration) and 95.6% (prediction) in the SWIR region of the HSI. Furthermore, the PLS-DA and binary images were capable to provide the visual information of treated and untreated corn seeds. The overall results suggest that HSI technique is accurate for classification of viable and non-viable seeds with non-destructive manner.  相似文献   
23.
葡萄酒带有浓厚的葡萄原产地地域特点与个性,快速准确地判别葡萄酒原产地具有重要意义,感官评定的方法存在一定的局限性。提出用贝叶斯信息融合技术将葡萄酒样品的近红外透射光谱及中红外衰减全反射光谱联立进行葡萄酒原产地判别的方法。分别用近、中红外光谱仪采集来自中国四个不同葡萄主栽产地(河北怀来、山东烟台、甘肃、河北昌黎)的153个葡萄酒样品的近红外透射光谱和中红外衰减全反射光谱,然后用偏最小二乘判别分析法(PLS-DA)分别建立基于近红外光谱和中红外光谱的葡萄酒产区判别模型;该模型输出的节点值归一化后作为所有样品分属每一类别的先验概率,代入Bayes判别公式得到后验概率,根据此概率判断样品的新类别属性,即用贝叶斯信息融合技术实现了两种判别结果的修正决策。近红外和中红外融合后的模型结果为:十次随机划分建模集和检验集,四产区葡萄酒判别模型建模集的平均准确率由78.21%(近红外)和82.57%(中红外)变为融合后的87.11%,检验集平均准确率由82.50%(近红外)和81.98%(中红外)变为融合后的90.87%,均优于单独采用一种光谱技术的判别结果。实验结果表明:信息融合技术有助于模型判别效果的提高,采用近、中红外光谱的贝叶斯信息融合技术对葡萄酒原产地进行快速识别是可行的。  相似文献   
24.
Abstract: Raman spectroscopy has been applied to analyze testicular cancer cell lines. Spectral differences between resistant and sensitive subtypes of testicular cancer cell line 833k samples were successfully analysed. The technique allowed reproducible and quantitative analysis of the specimen and illustrated the chemical specifications of the samples precisely. Six pairs of testicular cancer cell line 833k were studied and the findings were backed by statistical methods; that is, partial least squares discriminant analysis (PLS-DA).

It was concluded that Raman spectroscopy can objectively differentiate between resistant and sensitive cell lines. These results suggest that in the future it may be possible to use cell lines and diagnostic Raman spectroscopy for preoperative classification of biological molecules. Further research is underway to determine whether results obtained from spectroscopic analysis of cell lines can be applied to actual human tissue samples.  相似文献   
25.
We propose a very simple and fast method for detecting Sudan dyes (I, II, III and IV) in commercial spices, based on characterizing samples through their UV-visible spectra and using multivariate classification techniques to establish classification rules. We applied three classification techniques: K-Nearest Neighbour (KNN), Soft Independent Modelling of Class Analogy (SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA). A total of 27 commercial spice samples (turmeric, curry, hot paprika and mild paprika) were analysed by chromatography (HPLC-DAD) to check that they were free of Sudan dyes. These samples were then spiked with Sudan dyes (I, II, III and IV) up to a concentration of 5 mg L−1. Our final data set consisted of 135 samples distributed in five classes: samples without Sudan dyes, samples spiked with Sudan I, samples spiked with Sudan II, samples spiked with Sudan III and samples spiked with Sudan IV.Classification results were good and satisfactory using the classification techniques mentioned above: 99.3%, 96.3% and 90.4% of correct classification with PLS-DA, KNN and SIMCA, respectively. It should be pointed out that with SIMCA, there are no real classification errors as no samples were assigned to the wrong class: they were just not assigned to any of the pre-defined classes.  相似文献   
26.
27.
Five different instrumental techniques: thermogravimetry, mid-infrared, near-infrared, ultra-violet and visible spectroscopies, have been used to characterize a high quality beer (Reale) from an Italian craft brewery (Birra del Borgo) and to differentiate it from other competing and lower quality products. Chemometric classification models were built on the separate blocks using soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) obtaining good predictive ability on an external test set (75% or higher depending on the technique). The use of data fusion strategies – in particular, the mid-level one – to integrate the data from the different platforms allowed the correct classification of all the training and validation samples.  相似文献   
28.
Kaempferia angustifolia also known as kunci pepet in Indonesia, has been widely used as a traditional medicine to treat cold, cough, stomachache, diarrhea, fever, and dysentery, also used as a slimming agent. The level of biological activity depends on the composition and concentration of bioactive compounds present in the plants. In addition, extraction solvents affects the composition and concentration of bioactive compounds. Therefore, this study aimed at identifying the metabolite profile of K. angustifolia and to evaluate the inhibitory potential of their various solvent extracts towards lipase enzyme. Extracts were prepared using water and different concentration of ethanol (30–99%) and then analyzed their metabolite profile using LC-MS/MS. Lipase inhibitory activity was assessed using in vitro enzymatic inhibition assay. In this study, profile of K. angustifolia was shown to be rich in terpenoids (monoterpenoids, sesquiterpenoids, diterpenoids), and phenolics (carboxylic acid and phenolic acid). Most of the identified compounds were detected in ethanol extract of K. angustifolia. The ethanol extract at 100 μg/mL displayed 59.82% inhibitory activity towards lipase and was found to have the highest inhibitory activity compared to the other extracts. A partial least square-discriminant analysis (PLS-DA) was performed for clustering the extracts based on the peak area of 53 putatively identified compounds. Based on the result obtained, 50% ethanol extract is the best extract that gives the highest inhibition results and 15 metabolites were identified, mainly from the carboxylic acid and terpenoid groups.  相似文献   
29.
PCA和SPA的近红外光谱识别白菜种子品种研究   总被引:2,自引:0,他引:2  
为了实现对不同品种白菜种子的快速无损鉴别,应用近红外光谱技术获取白菜种子的光谱反射率,首先采用变量标准化校正和多元散射校正对原始光谱进行预处理;其次,采用主成分分析法(PCA)对光谱数据进行聚类分析,从定性分析的角度得到三种不同白菜种子的特征差异,并采用连续投影算法(SPA)选取特征波长;最后,分别基于全波段光谱、PCA分析得到的前3个主成分变量以及SPA算法选取的特征波长,建立了最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型进行白菜种子不同品种的鉴别。从主成分PC1、PC2得分图中可以看出,主成分1和2对不同种类白菜种子具有很好的聚类作用。基于特征波长建立的PLS-DA和LS-SVM模型的判别结果优于基于主成分变量建立的模型,其中基于特征波长建立的LS-SVM模型识别效果最优,建模集和预测集的品种识别率均达到100%。结果表明,通过SPA算法选取的6个特征波长变量能够很好的反映光谱信息,提出的SPA算法结合LS-SVM预测模型能获得满意的分类结果,为白菜种子品种的识别提供了一种新方法。  相似文献   
30.
近红外高光谱成像技术用于转基因大豆快速无损鉴别研究   总被引:1,自引:0,他引:1  
以近红外高光谱成像技术,结合化学计量学方法,研究了转基因大豆的快速、无损检测方法。实验以3种不同非转基因亲本(HC6, JACK, TL1)及其转基因大豆作为研究对象。采用高光谱成像系统采集874~1 734 nm波长范围的256个波段范围的高光谱图像,提取大豆的光谱信息,剔除明显噪声部分后,采用Moving Average(MA)平滑预处理的941~1 646 nm范围光谱数据进行分析。采用偏最小二乘判别分析算法(partial least squares-discriminant analysis, PLS-DA),对3种非转基因亲本大豆建立模型进行判别分析,其相应的建模集和预测集的判别正确率分别为97.50%和100%,100%和100%,96.25%和92.50%,结果表明,高光谱成像技术可用于非转基因大豆的识别。对非转基因亲本及其转基因大豆进行判别分析,基于全谱,3种的建模集和预测集的判别正确率分别为99.17%和99.17%,87.19%和81.25%,99.17%和98.33%;以x-loading weights提取非转基因亲本及其转基因大豆判别分析的特征波长并建立PLS-DA模型,3种的建模集和预测集的判别正确率分别为72.50%和80%,80.63%和79.38%,85%和85%,该结果表明非转基因亲本与转基因品种的判别分析是可行的,特征波长的选择也可用于非转基因亲本与转基因品种的判别分析。研究表明采用近红外高光谱成像技术对非转基因大豆、非转基因亲本及其转基因大豆进行鉴别是可行的,为转基因大豆的快速无损准确鉴别提供了一种新方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号