首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11194篇
  免费   15篇
  国内免费   7篇
化学   268篇
晶体学   7篇
力学   22篇
数学   181篇
物理学   10738篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   33篇
  2018年   47篇
  2017年   6篇
  2016年   20篇
  2015年   8篇
  2014年   6篇
  2013年   28篇
  2012年   11篇
  2011年   39篇
  2010年   14篇
  2009年   1498篇
  2008年   990篇
  2007年   115篇
  2006年   29篇
  2005年   29篇
  2004年   52篇
  2003年   771篇
  2002年   1410篇
  2001年   1400篇
  2000年   1287篇
  1999年   1182篇
  1998年   1125篇
  1997年   373篇
  1996年   49篇
  1995年   147篇
  1994年   127篇
  1993年   117篇
  1992年   141篇
  1991年   102篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Femtosecond laser (180 fs, 775 nm, 1 kHz) ablation characteristics of the nickel-based superalloy C263 are investigated. The single pulse ablation threshold is measured to be 0.26±0.03 J/cm2 and the incubation parameter ξ=0.72±0.03 by also measuring the dependence of ablation threshold on the number of laser pulses. The ablation rate exhibits two logarithmic dependencies on fluence corresponding to ablation determined by the optical penetration depth at fluences below ∼5 J/cm2 (for single pulse) and by the electron thermal diffusion length above that fluence. The central surface morphology of ablated craters (dimples) with laser fluence and number of laser pulses shows the development of several kinds of periodic structures (ripples) with different periodicities as well as the formation of resolidified material and holes at the centre of the ablated crater at high fluences. The debris produced during ablation consists of crystalline C263 oxidized nanoparticles with diameters of ∼2–20 nm (for F=9.6 J/cm2). The mechanisms involved in femtosecond laser microprocessing of the superalloy C263 as well as in the synthesis of C263 nanoparticles are elucidated and discussed in terms of the properties of the material.  相似文献   
92.
In the perspective of higher approximations of the Chapman-Enskog theory for transport property calculations, existing transport cross sections databases for interactions involving Earth atmosphere species have been updated and extended to Mars atmosphere components, proposing a phenomenological approach for the derivation of the relevant elastic collision integrals in neutral-neutral and neutral-ion interactions. Inelastic collision integrals terms, due to resonant charge exchange channels, have been considered and the asymptotic approach extended to the estimation of charge transfer cross section of multiple resonant processes. Electronic supplementary material  Supplementary Online Material  相似文献   
93.
The ionization of Rydberg hydrogen atoms near a metal surface at different scaled energies above the classical saddle point energy has been discussed by using the semiclassical method. The results show that the atoms ionize by emitting a train of electron pulses. In order to reveal the chaotic and escape dynamical properties of this system in detail, the sensitive dependence of the ionization rate upon the scaled energy is discussed. As the scaled energy is close to the saddle point energy, the ionization process of the hydrogen atom is nearly the same as the case of hydrogen atom in an electric field. There is only a single pulse of electrons, with an exponentially decaying tail. With the increase of the scaled energy, the ionization rates are similar to the case of the hydrogen atom in parallel electric and magnetic field, a series of electron pulses appear in the ionization process. This is caused by classical chaos, which occurs for the metal surface. Our studies also suggest that the metal surface can play the role of both the electric and the magnetic fields. Our theoretical analysis will be useful for guiding experimental studies of the ionization of atoms near the metal surface.  相似文献   
94.
The total cross sections for charge transfer in Li2+-H and He+-He+ collisions have been calculated, using the four body first Born approximation with correct boundary conditions (CB1-4B) and four body continuum distorted wave method (CDW-4B) in the energy range 10–5000 keV/amu. The role of dynamic electron correlations is examined as a function of the impact energy. The present results call for additional experimental data at higher impact energies than presently available.  相似文献   
95.
A non-close-packed three-dimensional photonic crystal of titania hollow spheres has been fabricated. The fabricated process is based on the silica template technique, thermal sintering, and the sol–gel process. The band-structure calculations and optical measurements both indicate that a quasi-full three-dimensional photonic bandgap located at the visible wavelength has been presented between the eighth and ninth bands. This indicates that the non-close-packed structure of titania hollow spheres was easier to open the complete photonic bandgaps than other face-centered cubic structures made by self-assembling methods at the visible region.  相似文献   
96.
A resonantly diode-pumped high-power continuous-wave Er3+:YAG laser with a crystalline fiber geometry based on total-internal-reflection pump guiding is reported. Up to 9.4 W of output power could be generated and a slope efficiency of 46.8% was achieved. Intrinsic efficiencies reached up to 48.8% and an optimum outcoupling of ∼20% was found. A strong thermal lens was observed and cavity stability and hysteresis effects were studied.  相似文献   
97.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   
98.
We investigate a possible mechanism for the autoionization of ultracold Rydberg gases, based on the resonant coupling of Rydberg pair states to the ionization continuum. Unlike an atomic collision where the wave functions begin to overlap, the mechanism considered here involves only the long-range dipole interaction and is in principle possible in a static system. It is related to the process of intermolecular Coulombic decay (ICD). In addition, we include the interaction-induced motion of the atoms and the effect of multi-particle systems in this work. We find that the probability for this ionization mechanism can be increased in many-particle systems featuring attractive or repulsive van der Waals interactions. However, the rates for ionization through resonant dipole coupling are very low. It is thus unlikely that this process contributes to the autoionization of Rydberg gases in the form presented here, but it may still act as a trigger for secondary ionization processes. As our picture involves only binary interactions, it remains to be investigated if collective effects of an ensemble of atoms can significantly influence the ionization probability. Nevertheless our calculations may serve as a starting point for the investigation of more complex systems, such as the coupling of many pair states proposed in [P.J. Tanner et al., Phys. Rev. Lett. 100, 043002 (2008)].  相似文献   
99.
We employ the inverse Boltzmann method to coarse-grain three commonly used three-site water models (TIP3P, SPC and SPC/E) where one molecule is replaced with one coarse-grained particle with isotropic two-body interactions only. The shape of the coarse-grained potentials is dominated by the ratio of two lengths, which can be rationalized by the geometric constraints of the water clusters. It is shown that for simple two-body potentials either the radial distribution function or the geometrical packing can be optimized. In a similar way, as needed for multiscale methods, either the pressure or the compressibility can be fitted to the all atom liquid. In total, a speed-up by a factor of about 50 in computational time can be reached by this coarse-graining procedure.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号