首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24511篇
  免费   3661篇
  国内免费   2239篇
化学   7999篇
晶体学   154篇
力学   2764篇
综合类   558篇
数学   9715篇
物理学   9221篇
  2024年   50篇
  2023年   612篇
  2022年   485篇
  2021年   627篇
  2020年   659篇
  2019年   598篇
  2018年   580篇
  2017年   843篇
  2016年   977篇
  2015年   790篇
  2014年   1335篇
  2013年   1665篇
  2012年   1340篇
  2011年   1509篇
  2010年   1356篇
  2009年   1534篇
  2008年   1670篇
  2007年   1777篇
  2006年   1470篇
  2005年   1326篇
  2004年   1260篇
  2003年   1032篇
  2002年   967篇
  2001年   815篇
  2000年   686篇
  1999年   652篇
  1998年   570篇
  1997年   497篇
  1996年   443篇
  1995年   418篇
  1994年   274篇
  1993年   256篇
  1992年   190篇
  1991年   219篇
  1990年   151篇
  1989年   99篇
  1988年   142篇
  1987年   84篇
  1986年   73篇
  1985年   69篇
  1984年   53篇
  1983年   33篇
  1982年   36篇
  1981年   45篇
  1980年   31篇
  1979年   33篇
  1978年   21篇
  1977年   13篇
  1976年   11篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Rechargeable Mg batteries (RMBs) are advantageous large-scale energy-storage devices because of the high abundance and high safety, but exploring high-performance cathodes remains the largest difficulty for their development. Compared with oxides and sulfides, selenides show better Mg-storage performance because the weaker interaction with the Mg2+ cation favors fast kinetics. Herein, nanorod-like FeSe2 was synthesized and investigated as a cathode for RMBs. Compared with microspheres and microparticles, nanorods exhibit higher capacity and better rate capability with a smaller particle size. The FeSe2 nanorods show a high capacity of 191 mAh g−1 at 50 mA g−1 and a good rate performance of 39 mAh g−1 at 1000 mA g−1. Ex situ characterizations demonstrate the Mg2+ intercalation mechanism for FeSe2, and a slight conversion reaction occurs on the surface of the particles. The capacity fading is mainly because of the dissolution of Fe2+, which is caused by the reaction between Fe2+ and Cl of the electrolyte during the charge process on the surface of the particles. The surface of FeSe2 is mainly selenium after long cycling, which may also dissolve in the electrolyte during cycling. The present work develops a new type of Mg2+ intercalation cathode for RMBs. More importantly, the fading mechanism revealed herein has considered the specificity of Mg battery electrolyte and would assist a better understanding of selenide cathodes for RMBs.  相似文献   
992.
Drug carrier materials need to possess good biological safety. Presently, most biosafety evaluation studies use rodent animal models, including rats and rabbits. However, the cost of raising these animals is relatively high and the experimental period is long. Caenorhabditis elegans(C. elegans) presents an ideal toxicological evaluation model due to its simple structure, easy cultivation, short life cycle, and evolutionary conservation. In this paper, we used C. elegans to test the biological safety of our pH-responsive carrier system(FFPFF self-assembling into a nanosphere structure, FFPFF Nps), which was designed for anti-tumor drug delivery. Our results showed that exposure to high doses of FFPFF Nps did not have a significant impact on the survival rate, growth, development, movement, and reproduction of C. elegans. The preliminary evaluation of the overall biological model of C. elegans shows that FFPFF Nps has good biological safety and warrants further study.  相似文献   
993.
Highly selective, sensitive, and stable biosensors are essential for the molecular level understanding of many physiological activities and diseases. Electrochemical aptamer-based (E-AB) sensor is an appealing platform for measurement in biological system, attributing to the combined advantages of high selectivity of the aptamer and high sensitivity of electrochemical analysis. This review summarizes the latest development of E-AB sensors, focuses on the modification strategies used in the fabrication of sensors and the sensing strategies for analytes of different sizes in biological system, and then looks forward to the challenges and prospects of the future development of electrochemical aptamer-based sensors.  相似文献   
994.
It is highly desired yet challenged to find an adsorbent with low cost and excellent performance in the removal of organic dyes from aqueous solution. Here we reported that a layered cationic aluminum oxyhydroxide material hydrothermally synthesized from the low-cost source materials of AlCl3∙6H2O, CaO and H2O, known as JU-111, can meet such criterion in removing methyl orange(MO) and Congo red(CR). JU-111 shows fast adsorption kinetics[especially for CR(15 s)] and high adsorption capacity(MO:>1000 mg/g; CR:>2900 mg/g), surpassing most of the reported adsorbents. Comprehensive characterizations of the adsorption process of MO and CR revealed that both adsorptions were achieved via the anion exchange process. The characteristics of extremely low cost and excellent performance render JU-111 great potential in the practical applications in the removal of anionic dyes.  相似文献   
995.
Recently, the visible-light photoredox decarboxylative couplings of N-(acyloxy)phthalimides (NHPI esters) and its derivatives have become an efficient chemical transformation. Under visible light, the NHPI esters undergo a single-electron transfer (SET) process to afford the corresponding carbon or nitrogen radicals that participate in many chemical transformations. The photoredox decarboxylative couplings have been applied to achieve construction of an array of carbon–carbon and carbon–heteroatom bonds as well as the synthesis of carbocycles and heterocycles. This review categorises photocatalysts, discusses the application and catalysis mechanisms of NHPI esters, and details recent progress in this field.  相似文献   
996.
Organic carbonyl-based compounds with redox-active site have recently gained full attention as organic cathode material in lithium-ion batteries (LIBs) owing to its high cyclability, low cost, high abundance, tunability of their chemical structure compared to traditionally used inorganic material. However, the utilization of organic carbonyl-based compounds in LIBs is limited to its poor charge capacity and dissolution of lower molecular weight species in electrolytes. In this study, we theoretically investigated five set of cyclohexanone derivatives (denoted as: H1, H2, H3, H4, and H5) and influence of functional groups (-F and -NH2) on their electrochemical properties using advanced level density functional theory (DFT) with the Perdew-Burke-Ernzenhof hybrid functional (PBE0) at 6-31+G(d,p) basis set. In line with the result gotten, the HOMO-LUMO results revealed that compound H5 is the most reactive among the studied cyclohexanone derivatives exhibiting energy gap values of 0.552, 0.532, 0.772 eV for free optimized structures and structurally engineered structures with electron withdrawing group (EWG) and electron donating group (EDG) respectively. Also, results from electrochemical properties of the studied compounds lithiated with only one lithium atom displayed that compound H2 exhibited interesting redox potential and energy density for all the studied structures in free optimized state (1108.28 W h kg?1, 4.92 V vs Li/Li+), with EWG (648.22 W h kg?1, 3.313 V Li/Li+), and with EDG (1002.4 W h kg?1, 5.011 V vs Li/Li+). From our result, we can infer that compound H2 and H3 with corresponding redox potential, energy density and theoretical charge capacity value of 4.92 V vs Li/Li+, 1108.28 W h kg?1, 225.26 mA h g?1 and 5.168 V, 1041.61 W h kg?1, 201.55 mA h g?1 lithiated with only one lithium atom in free optimized state are the most suitable compounds to be employed as organic cathode material in lithium-ion batteries among all the investigated cyclohexanone derivatives.  相似文献   
997.
Graphene oxide (GO) is a promising two-dimensional building block for fabricating high-performance gas separation membranes. Whereas the tortuous transport pathway may increase the transport distance and lead to a low gas permeation rate, introducing spacers into GO laminates is an effective strategy to enlarge the interlayer channel for enhanced gas permeance. Herein, we propose to intercalate CO2-philic MIL-101(Cr) metal-organic framework nanocrystals into the GO laminates to construct a 2D/3D hybrid structure for gas separation. The interlayer channels were partially opened up to accelerate gas permeation. Meanwhile, the intrinsic pores of MIL-101 provided additional transport pathways, and the affinity of MIL-101 to CO2 molecules resulted in higher H2/CO2 diffusion selectivity, leading to a simultaneous enhancement in gas permeance and separation selectivity. The MIL-101(Cr)/GO membrane with optimal structures exhibited outstanding and stable mixed-gas separation performance with H2 permeance of 67.5 GPU and H2/CO2 selectivity of 30.3 during the 120-h continuous test, demonstrating its potential in H2 purification application.  相似文献   
998.
Accumulation of chlorpyrifos (CP), a pesticide, causes a significant environmental problem in food, surface/ground waters further to human health. The removal of the CP pollutant in surface/wastewater could be achieved by biochar due to the improved physical and chemical properties. In this work, the CP removal capacities of biochar samples derived from walnut shells at various temperatures from 450 to 900 °C were investigated. The experiments were performed as laboratory batch type study and the adsorption efficiency was determined at various conditions such as adsorbent dosage (10–500 mg/L), sorbate concentrations (100–1500 µg/L), contact time (0–300 min), initial pH (3–10), and the number of recycle.By subtracting the pyrolysis temperature from 450 °C to 900 °C, the surface areas were found to increase from 12.9 m2/g to 353.3 m2/g, respectively.The 143 experimental data were evaluated by a pair of kinetics and isotherm models and the Adaptive Neural Fuzzy Inference System (ANFIS). The developed ANFIS model was 98.56% successful in predicting the CP removal efficiency depending on the adsorption conditions. Walnut Shell Biochar (WSBC) can be applied for CP adsorption with 86.64% removal efficiency under optimum adsorption conditions (adsorbent = 250 µg/L, sorbate = 1000 µg/L, pH = 7.07 and contact time 15 min) thanks to its improved porosity. It was determined that the biochar samples could be reused 5 times. Equilibrium adsorption was observed to conform to the Langmuir isotherm, and the maximum adsorption capacity for WSBC@900 was 3.536 mg/g.  相似文献   
999.
Single-drop microextraction (SDME) has been recognized as one of the simple miniaturized sample preparation tools for the isolation and preconcentration of several analytes from a complex sample matrix. In this review, we explored the applications of SDME coupled with various analytical techniques (spectroscopy, chromatography, and mass spectrometry) for the analysis of organic molecules, inorganic ions, and biomolecules from various sample matrices including food, environmental, clinical, pharmaceutical, and industrial samples. Also, it summarizes the use of nanoparticles in SDME combined with various analytical tools for the rapid analysis of several trace-level target analytes. An overview of ionic liquids, deep eutectic solvents, and SUPRAS, which improved the selectivity and sensitivity of various analytical techniques toward several analytes, as promising extracting solvent systems in SDME is also included. Finally, discussed the impressive analytical features and future perspectives of SDME in this review article.  相似文献   
1000.
Organic-inorganic lead halide perovskite solar cells have captured significant attention in recent years due to low processing costs and unprecedented development in power conversion efficiency (PCE). It has appeared from 2009 with PCE of 3.8% to being claimed more than 25.2% PCE in a very short span of time, showing their future prospective toward the fabrication of less expensive and stable solar cells. The incredible advancement in this technology encourages at one end, whereas several hurdles restricting its complete utilization for commercial purposes at another end. Although the selection of perovskite structure is limited with planar and mesoporous electron transport layers (ETLs), but identification of appropriate ETLs necessitates excellent effort to improve the surface morphology of absorber and obtain enhanced PCE with higher stability. In the present review, we have investigated various inorganic-organic ETLs with different device configurations of PSCs, primarily focusing on crystallization and morphology control techniques of ETL thin films. Numerous strategies such as surface functionalization, doping, and addition of interfacial layer are adopted for ETLs, and their effect on device efficiency, performance, and hysteresis is also discussed in detail. Additionally, designs of PSCs with different device configurations are discussed as well, providing future guidelines for significant progress in PSCs structure with different ETLs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号