首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   3篇
  国内免费   46篇
化学   166篇
晶体学   53篇
力学   31篇
数学   4篇
物理学   183篇
  2024年   1篇
  2023年   10篇
  2022年   9篇
  2021年   12篇
  2020年   9篇
  2019年   1篇
  2018年   6篇
  2017年   4篇
  2016年   11篇
  2015年   10篇
  2014年   12篇
  2013年   26篇
  2012年   13篇
  2011年   20篇
  2010年   35篇
  2009年   17篇
  2008年   20篇
  2007年   35篇
  2006年   32篇
  2005年   11篇
  2004年   24篇
  2003年   16篇
  2002年   13篇
  2001年   11篇
  2000年   12篇
  1999年   11篇
  1998年   9篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1983年   1篇
  1982年   4篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有437条查询结果,搜索用时 15 毫秒
431.
A hybrid algorithm that combines a phase-field model and a lattice gas model evolving according to a kinetic Monte-Carlo (KMC) simulation scheme is used to investigate the dynamics of vicinal surface growth during vapor phase epitaxy. The algorithm is computationally far more efficient than pure KMC schemes, and this gain in efficiency does not correspond to a loss in information on the kinetics of individual atoms. We present numerical studies on the temperature dependence of macroscopic properties of the growing surface, evaluating the relevant stochastic processes (attachment, detachment, diffusion and island dynamics) as a function of their rates. We show that the temperature at which step flow is replaced by island nucleation depends on incoming flux, diffusion parameters and interstep distance. Moreover, we validate these finding by comparison to experiments and by analytical investigations.  相似文献   
432.
We present a study of the magnetization reversal dynamics in ultrathin Au/Co/Au films with perpendicular magnetic anisotropy, for a Co thickness of 0.5, 0.7 and 1 nm. In these films, the magnetization reversal is dominated by domain nucleation for tCo=0.5, 0.7 nm and by domain wall propagation for tCo=1 nm. The prevalence of domain nucleation for the thickness range 0.5-0.7 nm is different from results reported in the literature, for the same system and for the same thickness range, where the magnetization reversal took place mainly by domain wall motion. We attribute this difference to the effect of roughness of the Au buffer layer on the morphology of the magnetic layer.  相似文献   
433.
Using classical molecular dynamics simulations, we have studied the first stages of defect cluster formation resulting from 10 keV displacement cascades in uranium dioxide. Nanometre size cavities and dislocation loops are shown to appear as a result of the irradiation process. A specifically designed TEM experiment involving He implanted thin foils have also been carried out to support this modelling work. These results, in conjunction with several other observations taken from the literature of ion implanted or neutron irradiated uranium dioxide, suggest a radiation damage controlled heterogeneous mechanism for insoluble fission product segregation in UO2.  相似文献   
434.
By using polyvinylpyrrolidone (PVP) as the nucleation promoter and directing agent, the shape-selective synthesis of ZnO has been realized at 35 °C. By simply modifying the amount of PVP or/and water, the product shape can be readily changed from one-dimensional structure via monolayer and semi-bilayer to bilayer structure with controlled aspect ratio (defined as monolayer thickness/edge length). As shown by both the photoluminescence and absorption spectra, the ZnO band gap can be modified by adjusting the sample shape. The low-temperature route reported here should open an effective and low-cost approach to the ZnO with tunable shapes and band gaps.  相似文献   
435.
Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal–organic frameworks, pre-organized multi-ion “secondary building units” (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small-angle X-ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q38 polyanions formed through cross-linking and polymerization of smaller silicate monomers and other oligomers. These Q38 are stabilized by hydrogen bonds with surrounding H2O and tetramethylammonium ions (TMA+). When Q38 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA)x(Q38)⋅n H2O](x−8) clathrate complexes into step edges on the crystals.  相似文献   
436.
Many chemical surface systems develop ordered nano-islands during repeated reaction and restoration. Platinum is used in electrochemical energy applications, like fuel cells and electrolysers, although it is scarce, expensive, and degrades. During oxidation-reduction cycles, simulating device operation, nucleation and growth of nano-islands occurs that eventually enhances the dissolution. Preventing nucleation would be the most effective solution. However, little is known about the atomic details of the nucleation; a process almost impossible to observe. Here, we analyze the nuclei-distance distribution mapping out the underlying atomic mechanism: a rarely observed, non-random nucleation takes place. Special, preferential nucleation sites that a priori do not exist, develop initially via a precursor and eventually form a semi-ordered Pt-oxide structure. This precursor mechanism seems to be general, possibly explaining also the nano-island formation on other surfaces/reactions.  相似文献   
437.
The fabrication of uniform cylindrical nanoobjects from soft materials has attracted tremendous research attention from both fundamental research and practical application points of view but has also posed outstanding challenges in terms of their preparation. Herein, we report a one-step method to assemble cylindrical micelles (CMs) with highly controllable lengths from a single liquid crystalline block copolymer by an in situ nucleation-growth strategy. By adjusting the assembly conditions, the lengths of the CMs are controlled from hundreds of nanometers to micrometers. Several influencing factors are systematically investigated to comprehensively understand the process. Particularly, the solvent quality is found determinative in either enhancing or suppressing the nucleation process to produce shorter and longer CMs, respectively. Taking advantage of this strategy, the lengths of CMs can be nicely controlled over a wide concentration range of four orders of magnitude. Lastly, CMs are produced on decent scales and applied as additives to dramatically toughen glassy plastic matrix, revealing an unprecedented length-dependent toughening effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号