The present study investigated the modification of mesoscale inhomogeneous distribu-tion of soil wetness, resulting from mesoscale irrigation over arid or semiarid lands in mid-latitude in the later summer or early autumn, on mesoscale climate under conditions withand without synoptic flow influence, using an interactive model between soil and atmo-sphere. The simulations indicated that after a mesoscale irrgation, a wet soil breeze circu-lation was thermally forced, which was, in many features, similar to that of the sea breezecirculation. The influence of synoptic flows on the structure of thermally--induced wet soilbreeze circulation was also discussed. 相似文献
Analysis of polyunsaturated fatty acids using high performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry is described. The standard fatty acid methyl esters from 16 to 22 carbons were analyzed by LC‐MS with APCI. The effect of orifice voltage and total carbon atoms versus number of double bonds in each homologue on the mass spectra is discussed. The correction coefficients for homologues from saturated fatty acids to hexaenoic acid are also mentioned. 相似文献
Gas‐phase oxidation routes of biogenic emissions, mainly isoprene and monoterpenes, in the atmosphere are still the subject of intensive research with special attention being paid to the formation of aerosol constituents. This laboratory study shows that the most abundant monoterpenes (limonene and α‐pinene) form highly oxidized RO2 radicals with up to 12 O atoms, along with related closed‐shell products, within a few seconds after the initial attack of ozone or OH radicals. The overall process, an intramolecular ROO→QOOH reaction and subsequent O2 addition generating a next R′OO radical, is similar to the well‐known autoxidation processes in the liquid phase (QOOH stands for a hydroperoxyalkyl radical). Field measurements show the relevance of this process to atmospheric chemistry. Thus, the well‐known reaction principle of autoxidation is also applicable to the atmospheric gas‐phase oxidation of hydrocarbons leading to extremely low‐volatility products which contribute to organic aerosol mass and hence influence the aerosol–cloud–climate system. 相似文献
Direct Numerical Simulation (DNS) of decaying isotropic 3D magnetohydrodynamic (MHD) turbulence based on the 10243-modes in a periodic box is used to study the statistical properties of turbulence. In this paper, the presence of intermittency in MHD turbulence is investigated through the analysis of the Probability Distribution Function (PDF) for Elsässer fields and total energy fluctuations. We observe that the PDFs of the Elsässer fields fluctuations display a strong non-Gaussian behavior at small scale, which can be ascribed to multifractality feature, while the PDFs of the total energy fluctuations have the same shape over all observed scales and are monofractal. The PDFs have stretched exponential tail and satisfy the function P(|δX|) ~ exp(?A|δX|μ). Numerically, we extract the exponent μ and find that it is constant for monofractal behavior as the length scale varies. To check the notion of self-similarity in the respective fluctuation, we apply the compensated structure functions. 相似文献
In this paper, we propose a method to generalize Strang's circulant preconditioner for arbitrary n-by-n matrices An. The th column of our circulant preconditioner Sn is equal to the th column of the given matrix An. Thus if An is a square Toeplitz matrix, then Sn is just the Strang circulant preconditioner. When Sn is not Hermitian, our circulant preconditioner can be defined as . This construction is similar to the forward-backward projection method used in constructing preconditioners for tomographic inversion problems in medical imaging. We show that if the matrix An has decaying coefficients away from the main diagonal, then is a good preconditioner for An. Comparisons of our preconditioner with other circulant-based preconditioners are carried out for some 1-D Toeplitz least squares problems: min ∥ b - Ax∥2. Preliminary numerical results show that our preconditioner performs quite well, in comparison to other circulant preconditioners. Promising test results are also reported for a 2-D deconvolution problem arising in ground-based atmospheric imaging. 相似文献
The new approach of kinetically controlled ozone removal suppresses particle formation in laboratory ozonolysis experiments for methylcyclohexene and methylenecyclohexane (MCHa) at excess alkene concentrations (see graph). The results support the hypothesis that peroxy radicals are involved in organic nucleation and particle‐growth mechanisms.
OH and HO(2) radicals, atmospheric detergents, and the reservoir thereof, play central roles in tropospheric chemistry. In spite of their importance, we had no choice but to trust their concentrations predicted by modeling studies based on known chemical processes. However, recent direct measurements of these radicals have enabled us to test and revise our knowledge of the processes by comparing the predicted and observed values of the radical concentrations. We developed a laser-induced fluorescence (LIF) instrument and successfully observed OH and HO(2) at three remote islands of Japan (Oki Island, Okinawa Island, and Rishiri Island). At Okinawa Island, the observed daytime level of HO(2) agreed closely with the model estimates, suggesting that the photochemistry at Okinawa is well described by the current chemistry mechanism. At Rishiri Island, in contrast, the observed daytime level of HO(2) was consistently much lower than the calculated values. We proposed that iodine chemistry, usually not incorporated into the mechanism, is at least partly responsible for the discrepancy in the results. At night, HO(2) was detected at levels greater than 1 pptv at all three islands, suggesting the presence of processes in the dark that produce radicals. We showed that ozone reactions with unsaturated hydrocarbons, including monoterpenes, could significantly contribute to radical production. 相似文献
The direct hydroxylation of benzene using molecular oxygen by atmospheric pulse DC corona discharge was investigated. The conversion of benzene increased with the increase of oxygen content and input voltage but the selectivity of phenol decreased due to the formation of polymerized products. The reactivity was also influenced by the kind and content of background inert gas. By using argon as background gas, we could get 2.2% of phenol yield at 60°C and 1 atm with energy consumption of 50 W. The strategy of reductive oxidation, which added hydrogen to the reactant, was not favorable to the phenol formation in this reaction system. The polymerized product showed the oligomeric character and the analysis of its chemical structure with FT–IR was presented. 相似文献