首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12279篇
  免费   1658篇
  国内免费   1118篇
化学   8878篇
晶体学   478篇
力学   1327篇
综合类   39篇
数学   289篇
物理学   4044篇
  2024年   43篇
  2023年   172篇
  2022年   407篇
  2021年   426篇
  2020年   715篇
  2019年   485篇
  2018年   418篇
  2017年   444篇
  2016年   703篇
  2015年   696篇
  2014年   737篇
  2013年   943篇
  2012年   646篇
  2011年   806篇
  2010年   712篇
  2009年   714篇
  2008年   792篇
  2007年   807篇
  2006年   714篇
  2005年   560篇
  2004年   555篇
  2003年   550篇
  2002年   364篇
  2001年   313篇
  2000年   248篇
  1999年   186篇
  1998年   167篇
  1997年   116篇
  1996年   113篇
  1995年   66篇
  1994年   73篇
  1993年   51篇
  1992年   49篇
  1991年   44篇
  1990年   37篇
  1989年   31篇
  1988年   17篇
  1987年   21篇
  1986年   23篇
  1985年   15篇
  1984年   16篇
  1983年   18篇
  1982年   14篇
  1981年   6篇
  1980年   2篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1971年   6篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Fluorinated Eu‐doped SnO2 nanostructures with tunable morphology (shuttle‐like and ring‐like) are prepared by a hydrothermal method, using NaF as the morphology controlling agent. X‐ray diffraction, field‐emission scanning electron microscopy, high‐resolution transmission electron microscopy, X‐ray photoelectron spectroscopy, and energy dispersive spectroscopy are used to characterize their phase, shape, lattice structure, composition, and element distribution. The data suggest that Eu3+ ions are uniformly embedded into SnO2 nanocrystallites either through substitution of Sn4+ ions or through formation of Eu‐F bonds, allowing for high‐level Eu3+ doping. Photoluminescence features such as transition intensity ratios and Stark splitting indicate diverse localization of Eu3+ ions in the SnO2 nanoparticles, either in the crystalline lattice or in the grain boundaries. Due to formation of Eu‐F and Sn‐F bonds, the fluorinated surface of SnO2 nanocrystallites efficiently inhibits the hydroxyl quenching effect, which accounts for their improved photoluminescence intensity.  相似文献   
62.
63.
Ion beam techniques are widely used jur modification as well us analysis of materials in development and production of VLSI circuits and their importance is continuously increased in course of the reduction of structure dimensions. Some possibilities and problems connected with the application of ion beams of low energy in the pattern transfer are- described and the stage of development achieved in the Central Institute of Isotope and Radiation Research is outlined.  相似文献   
64.
Magnetic minor hysteresis loops have been measured on A533B-type nuclear reactor pressure vessel steels with various combinations of Cu and Ni contents after neutron irradiation to a fluence up to 3.32 × 1019 n cm?2. A strong compositional dependence of minor-loop properties, which are indicators of internal stress, was found. The properties of high-Cu and high-Ni steel show a large increase in the low fluence regime below 0.4 × 1019 n cm?2, followed by a slow decrease, while those for low-Cu or low-Ni steel show a sudden decrease. The changes are roughly in linear proportion to the yield strength changes. The results were explained from the viewpoint of the formation and growth of Cu-rich precipitates and/or fine scale defects in the matrix and along pre-existing dislocations.  相似文献   
65.
The phenomenon of heterogeneous photocatalysis takes place in the degradation process of many organic contaminants on solid surfaces. Photocatalysis is based on the excitation of the semiconductor by irradiation with supraband gap photons and the migration of electron-hole pairs to the surface of the photocatalysts, leading to the reaction of the holes with adsorbed H2O and OH? to form hydroxyl radicals. Due to the stability and photosensitivity of TiO2 semiconductors, this system is well studied and is of great interest from an ecological and industrial point of view for use in the field of building materials. Clay roofing tiles, due to their long-term exploitation, are subject to physical, chemical and biological degradation that leads to deterioration. Ceramic systems have a high percentage of total porosity and considering their non-tolerance of organic coating, the use of surface active materials (SAM) that induce porosity in TiO2 coatings is of vital significance. Photocatalytic coatings applied on clay roofing tiles under industrial conditions were designed by varying the quantity of TiO2 (mass/cm2) on the tile surface (thin and thick TiO2 layer). The positive changes in specific surface area and mesopore structure of the designed coatings were made by the addition of PEG 600 as a surface active material. It was shown that a thin photocatalytic layer (0.399 mg suspension/cm2 tile surface), applied onto ceramic tiles under industrial conditions, had better photocatalytic activity in methylene blue decomposition, hydrophilicity and antimicrobial activity than a thick photocatalytic coating (0.885 mg suspension/cm2).  相似文献   
66.
A randomly inhomogeneous material may have macroscopic properties (elasticity, conductivity) scattered over some uncertainty intervals, despite the idealistic uniqueness assumption of homogenization theory. Based on minimum energy principles and certain statistical isotropy-symmetry hypotheses, our partly third-order bounds on the effective properties of random polycrystals are expected to estimate those scatter ranges. Explicit expressions are given and calculated for the elastic moduli of the random aggregates of some known monoclinic and triclinic crystals, which yield results in agreement with those calculated for higher-symmetry crystals: the moduli are determinable within an accuracy of two or three significant digits in most cases. It is shown, however, that with some real-world exotic crystals the bounds may fall far apart, and further theoretical and experimental studies on them deserve attention.  相似文献   
67.
M.K.A. Koker  U. Welzel 《哲学杂志》2013,93(22):2967-2994
Abstract

Experimental investigations have revealed that the Neerfeld–Hill and Eshelby–Kröner models, for grain interactions in massive, bulk (in particular, macroscopically isotropic) polycrystals, and a recently proposed effective grain-interaction model for macroscopically anisotropic polycrystals, as thin films, provide good estimates for the macroscopic (mechanical and) X-ray elastic constants and stress factors of such polycrystalline aggregates. These models can also be used to calculate the strain variation among the diffracting crystallites, i.e. the diffraction-line broadening induced by elastic grain interactions can thus be predicted. This work provides an assessment of diffraction-line broadening induced by elastic loading of polycrystalline specimens according to the various grain-interaction models. It is shown that the variety of environment, and thus the heterogeneity of the stress–strain states experienced by each of the individual grains exhibiting the same crystallographic orientation in a real polycrystal, cannot be accounted for by traditional grain-interaction models, where all grains of the same crystallographic orientation in the specimen frame of reference are considered to experience the same stress–strain state. A significant degree of broadening which is induced by the heterogeneity of the environments of the individual crystallites is calculated on the basis of a finite element algorithm. The obtained results have vast implication for diffraction-line broadening analysis and modelling of the elastic behaviour of massive polycrystals.  相似文献   
68.
Abstract

In this work, we have studied on double-layered perovskite (Ruddlesden–Popper) manganite structure in Pr1.75Sr1.25Mn2O7 synthesised by sol–gel method. The crystal structure of the double-layered perovskite is found as tetragonal from the X-ray diffraction analysis with I4/mmm space group. A high Curie temperature, TC = 305 K is observed from the temperature dependence of magnetisation measurement. The isothermal magnetisation curves showed that magnetic phase transition is second order due to the positive slope of the Arrott plots. Maximum magnetic entropy change (ΔSM) and adiabatic temperature change (ΔTad) values are calculated as 3.99 J kg?1 K?1 and 2.1 K under external magnetic field of 70 kOe, respectively. Since our double-layered perovskite manganite sample has desired TC value and relatively high ΔSM, it can be a potential candidate as a magnetocaloric material for room temperature magnetic cooling systems.  相似文献   
69.
采用原位共生长化学气相沉积法,以Co3O4、MoO3、Se粉末为前驱物,710℃下在SiO2衬底上生长掺钴MoSe2纳米薄片,分析讨论氢气含量对其生长及调节机理的影响.表面形貌分析表明,氢气的引入促进了成核所需的氧硒金属化合物以及横向生长中需要的CoMoSe化合物分子的生成;AFM(Atomic Force Microscope)结果表明氢气有利于生长单层二维超薄掺钴MoSe2.随着Co3O4前驱物用量的增加,样品的拉曼和PL(Photoluminescence)谱图分别表现出红移和蓝移现象,带隙实现从1.52—1.57 eV的调制.XPS(X-ray photoelectron spectroscopy)结果分析得到Co的元素组分比为4.4%.通过SQUID-VSM(Superconducting QUantum Interference Device)和器件电学测试分析了样品的磁电特性,结果表明Co掺入后MoSe2由抗磁性变为软磁性;背栅FETs器件的阈值电压比纯MoSe2向正向偏移5 V且关态电流更低;为超薄二维材料磁电特性研究及应用拓展提供了基础探索.  相似文献   
70.
《Physics letters. A》2020,384(21):126518
Superhard materials have always attracted people's interesting due to their extensive industrial applications. In this work, two reasonable superhard monoclinic allotropes of boron nitrides with space group of Cm have been designed based on previously proposed M-carbon structure using first-principles calculations. Our results show that Cm-BN-1 and Cm-BN-2 are dynamically stable, and they are direct semiconductors with bandgap of 2.69 and 3.90 eV, respectively. Moreover, they could be potential superhard materials with Vickers hardness of 58.0 and 60.4 GPa, respectively. This work provides insights for exploring new superhard boron nitrides materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号