首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   3篇
  国内免费   1篇
化学   75篇
晶体学   126篇
物理学   32篇
  2023年   4篇
  2020年   3篇
  2019年   1篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2010年   52篇
  2009年   12篇
  2008年   9篇
  2007年   6篇
  2006年   15篇
  2005年   9篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  2001年   47篇
  2000年   7篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1993年   1篇
  1980年   1篇
  1979年   2篇
  1968年   1篇
排序方式: 共有233条查询结果,搜索用时 15 毫秒
161.
The properties of GaN crystals grown from solution at temperatures ranging from 780 to 810 °C and near atmospheric pressure ∼0.14 MPa, have been investigated using low temperature X-band (∼9.5 GHz) electron paramagnetic resonance spectroscopy, micro-Raman spectroscopy, photoluminescense spectroscopy, and photoluminescence imaging. Our samples are spontaneously nucleated thin platelets of approximate dimensions of 2×2×0.025 mm3, or samples grown on both polycrystalline and single crystal HVPE large-area (∼3×8×0.5 mm3) seeds. Electron paramagnetic resonance spectra consists of a single Lorentzian line with axial symmetry about the c-axis, with approximate g-values, g=1.951 and g=1.948 and a peak-to-peak linewidth of∼4.0 G. This resonance has been previously assigned to shallow impurity donors/conduction electrons in GaN and attributed to Si- and/or O impurities. Room temperature photoluminescence and photoluminescence imaging data from both Ga- and N-faces show different dominant emission bands, suggesting different incorporation of impurities and/or native defects. Raman scattering and X-ray diffraction show moderate to good crystalline quality.  相似文献   
162.
We present a detailed investigation on the influence of deposition conditions on morphological, structural and optical properties of InN films deposited on Si(1 1 1) and GaN-on-sapphire templates by reactive radio-frequency (RF) sputtering. The deposition parameters under study are nitrogen content in the sputtering gas, substrate–target distance, substrate temperature and RF power. X-ray diffraction measurements confirm the (0 0 0 1) preferred growth orientation and the wurtzite crystallographic structure of the material. For optimized deposition conditions, InN on Si(1 1 1) substrates presents smooth surface with root-mean-square roughness ∼1 nm. Surface quality of the InN films can be further improved by deposition on GaN-on-sapphire templates, achieving root-mean-square roughness as low as ∼0.4 nm, comparable to that of the underlying substrate. The room-temperature absorption edge is located at 1.70 eV. Intense low-temperature photoluminescence peaking at 1.60 eV is observed.  相似文献   
163.
InGaN height-controlled quantum dots (HCQDs) were grown by alternately depositing In0.4Ga0.6N QD and In0.1Ga0.9N spacer layers on a seed In0.4Ga0.6N QD layer. Structural and optical studies showed that the height of the InGaN QDs was controlled by the deposition cycle of In0.4Ga0.6N/In0.1Ga0.9N layers. Photoluminescence studies showed that the In0.4Ga0.6N HCQDs provided deep potential wells and the piezoelectric field-induced quantum-confined Stark effect was negligibly small. These phenomena are attributed to variation in quantum confinement energy in the electronically coupled InGaN HCQDs providing deep potential wells.  相似文献   
164.
Large and thick AlN bulk single crystals up to 43 mm in diameter and 10 mm in thickness have been successfully grown on 6H-SiC (0 0 0 1) substrates by the sublimation method using a TaC crucible. Raman spectrum indicates that the polytype of the grown AlN single crystals is a Wurtzite-2H type structure, and the crystals do not include any impurity phases. The quality at the top of the crystal improves as crystal thickness increases along the 〈0 0 0 1〉 direction during growth: a low etch pit density (7×104 cm−2) and a small full width at half maximum for a 0002 X-ray rocking curve (58 arcsec) have been achieved at a thickness of ∼8 mm. The possible mechanism behind the improvement in the AlN crystal quality is also discussed.  相似文献   
165.
We have performed a detailed investigation of the metal-organic chemical vapor deposition (MOCVD) growth and characterization of InN nanowires formed on Si(1 1 1) substrates under nitrogen rich conditions. The growth of InN nanowires has been demonstrated by using an ion beam sputtered (∼10 nm) Au seeding layer prior to the initiation of growth. We tried to vary the growth temperature and pressure in order to obtain an optimum growth condition for InN nanowires. The InN nanowires were grown on the Au+In solid solution droplets caused by annealing in a nitrogen ambient at 700 °C. By applying this technique, we have achieved the formation of InN nanowires that are relatively free of dislocations and stacking faults. Scanning electron microscopy (SEM) showed wires with diameters of 90–200 nm and lengths varying between 3 and 5 μm. Hexagonal and cubic structure is verified by high resolution X-ray diffraction (HR-XRD) spectrum. Raman measurements show that these wurtzite InN nanowires have sharp peaks E2 (high) at 491 cm−1 and A1 (LO) at 591 cm−1.  相似文献   
166.
Zinc-blende GaN quantum dots were grown on 3C-AlN(0 0 1) by a vapor–liquid–solid process in a molecular beam epitaxy system. We were able to control the density of the quantum dots in a range of 5×108–5×1012 cm−2. Photoluminescence spectroscopy confirmed the optical activity of the GaN quantum dots in a range of 1011–5×1012 cm−2. The data obtained give an insight to the condensation mechanism of the vapor–liquid–solid process in general, because the GaN quantum dots condense in metastable zinc-blende crystal structure supplied by the substrate, and not in the wurtzite crystal structure expected from free condensation in the droplet.  相似文献   
167.
We report on the epitaxial growth of the intrinsic ferromagnetic semiconductor GdN on Si (1 1 1) substrates buffered by a thick AlN layer, forming a heteroepitaxial system with promise for spintronics. Growth is achieved by depositing Gd in the presence of unactivated N2 gas, demonstrating a reactivity at the surface that is sufficient to grow near stoichiometric GdN only when the N2:Gd flux ratio is at least 100. Reflection high-energy electron diffraction and X-ray diffraction show fully (1 1 1)-oriented epitaxial GdN films. The epitaxial quality of the films is assessed by Rutherford backscattering spectroscopy carried out in random and channelling conditions. Magnetic measurements exhibit a Curie temperature at 65 K and saturation magnetisation of 7 μB/Gd in agreement with previous bulk and thin-film data. Hall effect and resistance data establish that the films are heavily doped semiconductors, suggesting that up to 1% of the N sites are vacant.  相似文献   
168.
We investigated the properties of Ge-doped, high-quality bulk GaN crystals with Ge concentrations up to 2.4×1019 cm−3. The Ge-doped crystals were fabricated by hydride vapor phase epitaxy with GeCl4 as the dopant source. Cathodoluminescence imaging revealed no increase in the dislocation density at even the highest Ge concentration, with values as low as 3.4×106 cm−2. The carrier concentration, as determined by Hall measurement, was almost identical to the combined concentration of Ge and unintentionally incorporated Si. The electron mobilities were 260 and 146 cm2 V−1 s−1 for n=3.3×1018 and 3.35×1019 cm−3, respectively; these values are markedly larger than those reported in the past for Ge-doped GaN thin films. The optical absorption coefficient was quite small below the band gap energy; it slightly increased with increase in Ge concentration. Thermal conductivity, estimated by the laser-flash method, was virtually independent of Ge concentration, maintaining an excellent value around 2.0 W cm−1 K−1. Thermal expansion coefficients along the a- and m-axes were approximately constant at 5.0×10−6 K−1 in the measured doping concentration range.  相似文献   
169.
Large-area (>1 cm2) freestanding translucent orthorhombic boron nitride (oBN) films have been synthesized by magnetron sputtering at a low radio-frequency power of 120 W. The structural characterizations were performed by means of X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. It is demonstrated that oBN is a direct band gap semiconductor (Eg∼3.43 eV). Excited by ultraviolet laser (wavelength at 325 nm), the oBN films emit strong white light, which can be seen by the naked eyes in the dark. In the photoluminescence spectrum, besides the ultraviolet near-band-edge radiative recombination emission, there are three visible emission bands (centered at 400, 538, and 700 nm) arising from the defect-related deep-level centers of oBN, which are mixed to form the white light emission. The hardness and elastic modulus of oBN films are 11.5 and 94 GPa, respectively, examined by nanoindentation measurements.  相似文献   
170.
Materials research is an interdisciplinary field in which engineers and physical scientists work together. Since the major binary oxides, nitrides, and carbides, which are currently used as high-performance ceramics, were discovered in the last century, the role of chemistry in the development of materials has become barely noticeable. This has changed only in the recent past as, for example, purity and defined morphology of starting powders were recognized as crucial parameters for enhancing the reliability of ceramic workpieces. While the application of chemical methods led to gradual–though significant–improvements, the true potential of chemistry lies rather in the exploitation of new chemical systems and the development of new preparative routes to already known materials. Such an approach is the preparation of ceramics from molecular or polymeric precursors. Herein we survey the most important contributions to those preparative routes starting from the pioneering work in the 1960s and the 1970s; a certain emphasis is placed on the concepts that we have applied to the preparation of multinary, nonoxide materials and amorphous inorganic networks. The name “amorphous high-performance ceramics” is in fact a contradiction in terms. Such materials are thermodynamically unstable with respect to the transformation or decomposition to crystalline phases, thus excluding their application in sensitive areas at high temperatures. However, the selection of element combinations for which the binding energies are derived from strong, local covalent bonds and which are therefore less dependent on a long-range crystalline order, can yield amorphous materials of remarkable thermal and mechanical durability. This is exemplified by novel quaternary ceramics in the Si/B/N/C system, for which an efficient synthesis, starting from raw materials suitable for industrial production, has been developed. For instance, a material of the composition SiBN3C remains amorphous up to 1900°C, which is unique, and, with respect to oxidation, is the most stable nonoxide ceramic known to date. Another advantage of this in several respects unsurpassed material is the simple way, in which the viscosity of the polymeric precursors can be adjusted to various methods of shaping. So far infiltrations and coatings have been realized. Most developed is the preparation of fibers, which in terms of their performance characteristics are significantly better than those currently available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号