首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   11篇
  国内免费   61篇
化学   182篇
晶体学   5篇
力学   17篇
物理学   256篇
  2023年   2篇
  2022年   2篇
  2020年   2篇
  2019年   6篇
  2018年   2篇
  2017年   6篇
  2016年   8篇
  2015年   7篇
  2014年   13篇
  2013年   15篇
  2012年   31篇
  2011年   54篇
  2010年   44篇
  2009年   37篇
  2008年   35篇
  2007年   28篇
  2006年   31篇
  2005年   22篇
  2004年   25篇
  2003年   17篇
  2002年   11篇
  2001年   15篇
  2000年   8篇
  1999年   13篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有460条查询结果,搜索用时 31 毫秒
61.
Hierarchical pinetree like Bi2S3 was synthesized through a facile solvothermal route in the mixture of deionized water and tetrahydrofuran. The phase composition, morphology, and structure of the as‐prepared Bi2S3 products were characterized by using various techniques including X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). It was found that the pinetree like Bi2S3 structures were composed of numerous assembled nanosheets, which had uniform morphology with the mean width and length of about 110 nm and 15 μm, respectively. Furthermore, the electrochemical property of the obtained pinetree like Bi2S3 was investigated. The pinetree like Bi2S3 presented both the high electrochemical hydrogen storage and electrochemical Li intercalation performance.  相似文献   
62.
Magnetostriction characteristics of Mn substituted cobalt ferrite, CoFe2?xMnxO4 (0 ≤ x ≤ 0.3), sintered from nanocrystalline powders of average particle size of ~4 nm have been studied. Larger value of magnetostriction at lower magnetic field is achieved after substitution of Mn for Fe. The maximum value of magnetostriction coefficient is not much affected and the slope of the magnetostriction is increased with increasing Mn content. Higher maximum value of magnetostriction coefficient (λ) of 234 ppm comparable to that of the unsubstituted composition with larger strain derivative (/dH) is obtained for x = 0.2 in CoFe2?xMnxO4. The magnetostriction coefficient is increased to 262 ppm with further enhancement in the strain derivative after annealing the sintered compact at 300 °C in a magnetic field of 400 kA/m for 30 min.  相似文献   
63.
Pentacene thin films with thicknesses ranging from 10 nm to 180 nm are investigated by specular X-ray diffraction in the reflectivity regime and in the wide angular regime. The results of the reflectivity measurements show a clear shift of the 001 reflection of the thin film phase depending on the layer thickness. It is shown that this shift can be explained by the dynamical scattering theory. The wide angular regime measurements show the 00L of the thin film phase. Williams-Hall plots are used to extract information on the crystallite size and mean micro strain of the thin film phase. The crystallite size is in good agreement with the results obtained by the reflectivity measurements. From this it can be concluded that the thin film phase crystallites are extended over the entire film thickness down to the substrate. Additionally an increase of the micro strain with increasing film thickness is observed.  相似文献   
64.
Nanocrystalline Sm0.5Y0.5Co5 powders with high coercivity HC and enhanced remanence Mr were prepared by mechanical milling and subsequent annealing. Annealing temperatures T ranging from 973 to 1173 K, and times t ranging from 1 to 5 min were used. X-ray diffraction (XRD) and DC-magnetization measurements were carried out to study the microstructure and magnetic properties of these samples. XRD patterns demonstrate that the average grain size D of the nanocrystalline powders depends on the annealing temperature T and time t: D ranges from 11 nm (for T=973 K and t=1 min) to 93 nm (for T=1173 K and t=5 min). Magnetic measurements performed at room temperature indicate high coercivity values (HC>955 kA/m), and enhanced remanence (Mr/Mmax>0.5) for all samples. A strong annealing-induced grain size dependence of these magnetic properties was found.  相似文献   
65.
Nanostructured YCo5 (70%wt)+Y2Co17 (30%wt) composite powders were prepared by mechanical milling and subsequent annealing at 1073 K for 1.5 min. The average grain size D of the YCo5 and Y2Co17 phases, obtained from XRD data, was 14 and 12 nm, respectively. The temperature dependence of the magnetic properties was studied by DC magnetization measurements at temperatures T ranging from 3 to 300 K. Hysteresis loops (Hmax=70 kOe) show that both the coercivity HC and the squareness σr/σmax are temperature-dependent. The coercivity increases from 12 kOe at room temperature to 18 kOe at T=3 K. The observed enhanced remanence (σr/σmax>0.5) indicates that a strong exchange coupling is present at all temperatures used in this study. The maximum magnetization σmax changes little with temperature and has a value of about 70% of the effective saturation magnetization of the title compound.  相似文献   
66.
The mechanical behavior of metals and alloys is strongly related to grain size. In particular, the grain refining leads to the increase in yield strength in the ultra-fine grain (<1 μm) and nanocrystalline (<100 nm) regimes.Instrumented nanoindentation measurements allow a rapid evaluation of mechanical properties of materials, and the possibility to perform tests in a very wide range of loads. The strain rate sensitivity of ultra-fine and nanocrystalline metals can be derived by changing loading rates. The present paper presents the results on the strain rate sensitivity of ultra-fine grain metals produced by equa-channel angular pressing and nanocrystalline materials produced via electrodeposition. The results were obtained by systematic experiments performed at different loading rates (3, 30 and 300 mN/s) showing broad ranges of variations for the investigated metals. Also, the strain rate sensitivity of the studied materials was derived from the load vs. depth curves.  相似文献   
67.
ABSTRACT

Type 316L austenitic stainless steel was severely plastically deformed at room temperature using linear plane-strain machining in a single pass that imparted shear strains up to 2.2 at strain rates up to 2?×?103 s?1. The resulting microstructures exhibited significant grain size refinement and improved mechanical strength where geometric dynamic recrystallization was identified as the primary microstructural recrystallization mechanism active at high strain rates. This mechanism is rarely observed in low to medium stacking fault energy materials. The critical stress required for twin initiation is raised by the combined effects of refined grain size and the increase in stacking fault energy due to the adiabatic heating of the chip, thus permitting geometric dynamic recrystallization. The suppression of martensite formation was observed and is correlated to the significant adiabatic heating and mechanical stabilisation of the austenitic stainless steel. A gradient of the amount of strain induced martensite formed from the surface towards the interior of the chip. As the strain rate is increased from 4?×?102 s?1–2?×?103 s?1, a grain morphology change was observed from a population of grains with a high fraction of irregular shaped grains to one dominated by elongated grain shapes with a microstructure characterised by an enhanced density of intragranular sub-cell structure, serrated grain boundaries, and no observable twins. As strain rates were increased, the combination of reduction in strain induced martensite and non-uniform intragranular strain led to grain softening where a Hall-Petch relationship was observed with a negative strengthening coefficient of ?0.08?MPa m1/2.  相似文献   
68.
Water-soluble Mn3O4 nanocrystals have been prepared through thermal decomposition in a high temperature boiling solvent, 2-pyrrolidone. The final product was characterized with XRD, SEM, TEM, FTIR and Zeta Potential measurements. Average crystallite size was calculated as ∼15 nm using XRD peak broadening. TEM analysis revealed spherical nanoparticles with an average diameter of 14±0.4 nm. FTIR analysis indicated that 2-pyrrolidone coordinates with the Mn3O4 nanocrystals only via O from the carbonyl group, thus confining their growth and protecting their surfaces from interaction with neighboring particles.   相似文献   
69.
Fe3O4 powders, whose average particle sizes were 400 nm, 100 nm, and 10 nm in diameter, were prepared in order to investigate the effect of particle size on their electrochemical activity. X-ray diffraction and electron microscopy measurements confirmed that all the prepared samples were identified as inverse-spinel type Fe3O4, whose crystallite/particle sizes were between 400 nm and 10 nm. We found that the electrochemical activity of Fe3O4 in a lithium salt electrolyte was enhanced with a decrease in the particle size from 400 nm to 10 nm. The 10 nm nanocrystalline Fe3O4 powder demonstrated the high discharge capacities of about 130 and 160 mAh g−1 with a satisfactory capacity retention as the active cathode material of Li and Na batteries, respectively.  相似文献   
70.
In this study, lithium-tetraborate (LTB) was synthesized by three methods of high-temperature solid state, wet and combustion reactions. Copper was added to pure LTB by solution assisted method, to improve the thermoluminescence (TL) properties. The pellets of LTB were produced using pressing and sintering operations at 850 °C. The synthesized LTB pellets, exposed to the gamma radiation of 60Co source in the dose range of 5–20Gy and glow curves as well as dose–response diagrams were obtained. Ultimately, the effects of different factors on TL behaviors like dopant, crystallite size and particle morphologies were studied. The results show that between pure samples, LTB which synthesized by combustion method has higher TL sensitivity than those of other methods. However, it was seen a weak glow peak for 5Gy, due to the nanocrystalline structure of LTB. This property led to decrease TL intensity at low-doses and postponed saturation at high-doses. Fading of this sample was also less than others and has relatively better reproducibility. Among LTB:Cu pellets which synthesized by the wet reaction showed the higher TL response than others due to the creation of more traps and luminescence centers and had promising properties in the case of dose response linearity and fading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号