首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110086篇
  免费   6243篇
  国内免费   14806篇
化学   90554篇
晶体学   1536篇
力学   2482篇
综合类   947篇
数学   13436篇
物理学   22180篇
  2024年   109篇
  2023年   803篇
  2022年   1872篇
  2021年   2189篇
  2020年   2620篇
  2019年   3518篇
  2018年   2409篇
  2017年   4012篇
  2016年   3565篇
  2015年   3042篇
  2014年   4137篇
  2013年   8222篇
  2012年   7420篇
  2011年   6330篇
  2010年   5109篇
  2009年   6842篇
  2008年   7177篇
  2007年   7427篇
  2006年   6788篇
  2005年   5810篇
  2004年   5458篇
  2003年   4496篇
  2002年   5605篇
  2001年   3417篇
  2000年   3205篇
  1999年   2867篇
  1998年   2533篇
  1997年   2005篇
  1996年   1696篇
  1995年   1617篇
  1994年   1361篇
  1993年   1144篇
  1992年   1083篇
  1991年   744篇
  1990年   603篇
  1989年   579篇
  1988年   434篇
  1987年   328篇
  1986年   304篇
  1985年   262篇
  1984年   263篇
  1983年   154篇
  1982年   240篇
  1981年   205篇
  1980年   212篇
  1979年   219篇
  1978年   189篇
  1977年   133篇
  1976年   118篇
  1973年   71篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
951.
Improved reaction conditions for the preparation of poly(p‐phenylene sulfide) (PPS) directly from bis(4‐bromophenyl) disulfide (BBD) have been established. Heating BBD with magnesium metal afforded only a low molecular weight polymer. PPS with a melting temperature around 280 °C was obtained from BBD in the presence of sodium carbonate or zinc metal. The best results were obtained with the addition of a catalytic amount of KI to the zinc–BBD mixture. Polymers prepared by the above methods are semicrystalline and dissolve in 1‐chloronaphthalene and have properties comparable to commercial PPS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 900–904, 2006  相似文献   
952.
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006  相似文献   
953.
Two series of novel fluorinated poly(ether imide)s (coded IIIA and IIIB ) were prepared from 2,6‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride and 2,7‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride, respectively, with various trifluoromethyl‐substituted aromatic bis(ether amine)s by a standard two‐step process with thermal or chemical imidization of the poly(amic acid) precursors. These fluorinated poly(ether imide)s showed good solubility in many organic solvents and could be solution‐cast into transparent, flexible, and tough films. These films were nearly colorless, with an ultraviolet–visible absorption edge of 364–386 nm. They also showed good thermal stability with glass‐transition temperatures of 221–298 °C, 10% weight loss temperatures in excess of 489 °C, and char yields at 800 °C in nitrogen greater than 50%. The 2,7‐substituted IIIB series also showed better solubility and higher transparency than the isomeric 2,6‐substituted IIIA series. In comparison with nonfluorinated poly (ether imide)s, the fluorinated IIIA and IIIB series showed better solubility, higher transparency, and lower dielectric constants and water absorption. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5909–5922, 2006  相似文献   
954.
955.
An investigation was made of the gelation of dimethacrylate‐type crosslinking agents in view of an application for separation media. The study mainly centered on a crosslinking agent, glycerol dimethacrylate (GDMA), which is relatively hydrophilic because of a hydroxyl group in the middle of its structure. The gelation of GDMA was compared with that of other hydrophobic crosslinking agents such as ethylene glycol dimethacrylate and 1,6‐hexanediol dimethacrylate. The diluents used in the study were toluene, toluene with methanol, and cyclohexanol. The gelation was observed in real time with a charge coupled device camera and dynamic light scattering (DLS). Also, the separated dry gels were extensively characterized with scanning electron microscopy, BET (N2 absorption and desorption isotherm), and Fourier transform infrared. DLS analysis showed a stronger molecular interaction of GDMA gelation in toluene, whereas this interaction was much weaker in an alcoholic solvent such as toluene with methanol or cyclohexanol. This indicated that GDMA gelation might proceed through hydrogen bonding as well as a crosslinking reaction of vinyl groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 949–958, 2006  相似文献   
956.
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006  相似文献   
957.
A new class of thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing pendant epoxide groups were synthesized and characterized. These new epoxy polymers were prepared through the bromination of poly(2,6‐dimethyl‐1,4‐phenylene oxide) in halogenated aromatic hydrocarbons followed by a Wittig reaction to yield vinyl‐substituted polymer derivatives. The treatment of the vinyl‐substituted polymers with m‐chloroperbenzoic acid led to the formation of epoxidized poly(2,6‐dimethyl‐1,4‐phenylene oxide) with variable pendant ratios, and the structures and properties were studied with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The ratios of pendant functional groups were tailored for the polymer properties, and the results showed that the glass‐transition temperatures increased as the benzylic protons were replaced by bromo‐, vinyl‐, or epoxide‐functional groups, whereas the thermal stability decreased in comparison with the original polymer. Within a molar fraction of 20–50%, the degree of functionalization had little effect on the glass‐transition temperature; however, it correlated inversely with the thermal stability of each functionalized polymer. The thermal curing behavior of the epoxide‐functionalized polymer was enhanced by the increment of the pendant functionality, which resulted in a significant increase in the glass‐transition temperature as well as the thermal stability after the curing reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5875–5886, 2006  相似文献   
958.
Novel catalytic systems, prepared in situ by the oxidative addition of 8‐hydroxyquinoline ligands to bis(1,5‐cyclooctadiene)nickel(0) and activated by methylaluminoxane, were studied in ethylene polymerization. When 8‐hydroxyquinoline was employed, only oligomeric products were obtained. On the contrary, 5,7‐dinitro‐8‐hydroxyquinoline gave linear polyethylene (PE), but with a modest activity. For the catalyst based on 5‐nitro‐8‐hydroxyquinoline, the productivity was largely dependent on the content of free trimethylaluminum (TMA) present in the commercial aluminoxane. The progressive optimization of the TMA/oligomeric methylaluminoxane ratio increased the productivity, which reached 700 kg of PE/(mol of Ni × h), by an order of magnitude. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 200–206, 2006  相似文献   
959.
The thermochemical transformation of electrostatically formed complexes of methyl orange (MO) with polycations containing primary amine groups such as ammonium salts afforded new polymers with a high concentration of covalently bound 4‐N,N‐dimethylaminoazobenzene groups in the side chain. Poly(allylamine hydrochloride) and poly(β‐aminoethylene acrylamide hydrochloride) were employed as support polycations for MO. The transformation of sulfonate–ammonium ion pairs into sulfonamide bonds, via heating at an elevated temperature, was supported by the polymer properties before and after the thermal treatment. The polymer structure changes were monitored with elemental analysis, Fourier transform infrared, 1H NMR, and ultraviolet–visible absorption spectroscopy, and thermogravimetric analysis. The spacer length between the backbone and azobenzene structures used as side chains strongly influenced the polymer properties before and after the heat‐induced reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5898–5908, 2006  相似文献   
960.
We reacted various dimeric, liquid‐crystalline epoxy–imine monomers, differing in the length of the central aliphatic spacer or the dipolar moments, with heptanedioic acid. The resulting systems showed a liquid‐crystalline phase in some cases, depending on the dimer and on the reaction conditions. The systems were characterized with respect to their mesomorphic properties and then were submitted to dynamic mechanical thermal analysis in both fixed‐frequency and frequency‐sweep modes in the shear sandwich configuration. The arrangement in the liquid‐crystalline phase seemed to be mainly affected both by the polarization of the mesogen and by the reaction temperature, which favored the liquid‐crystalline arrangement when it was lying in the range of stability of the dimer mesophase. In agreement with other recent literature data, dynamic mechanical thermal analysis results suggested that the presence of the mesogen directly incorporated into the main chain increased the lifetimes of the elastic modes both in the isotropic phase and in the liquid‐crystalline phase with respect to side‐chain liquid‐crystalline elastomers and that the time–temperature superposition principle did not hold through the liquid‐crystalline‐to‐isotropic transition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44:6270–6286, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号