首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3439篇
  免费   637篇
  国内免费   300篇
化学   1413篇
晶体学   32篇
力学   487篇
综合类   23篇
数学   287篇
物理学   2134篇
  2024年   3篇
  2023年   22篇
  2022年   48篇
  2021年   69篇
  2020年   82篇
  2019年   77篇
  2018年   71篇
  2017年   84篇
  2016年   118篇
  2015年   113篇
  2014年   189篇
  2013年   291篇
  2012年   232篇
  2011年   249篇
  2010年   176篇
  2009年   231篇
  2008年   247篇
  2007年   238篇
  2006年   193篇
  2005年   192篇
  2004年   224篇
  2003年   167篇
  2002年   132篇
  2001年   134篇
  2000年   93篇
  1999年   105篇
  1998年   112篇
  1997年   82篇
  1996年   64篇
  1995年   62篇
  1994年   51篇
  1993年   55篇
  1992年   23篇
  1991年   23篇
  1990年   11篇
  1989年   15篇
  1988年   18篇
  1987年   11篇
  1986年   8篇
  1985年   10篇
  1984年   15篇
  1983年   4篇
  1982年   10篇
  1981年   5篇
  1980年   5篇
  1977年   5篇
  1976年   2篇
  1974年   1篇
  1968年   1篇
  1957年   1篇
排序方式: 共有4376条查询结果,搜索用时 15 毫秒
101.
Obtaining uniformly dispersed SWNT within an aqueous mixture for subsequent use as a dried coating in electronic biosensors is a challenge. The objective of this study is to relate SWNT dispersion conditions to resultant dried film properties. Aqueous solutions of SWNT dispersed with CMC (a dispersing agent with unique properties compatible with biomolecules) at different SWNT:CMC weight ratios and at different sonication conditions were studied. Solution particle size distribution data was obtained using dynamic light scattering. Differently formulated/processed SWNT/CMC solutions were used to form dry thin, conductive films. The resistance of each film was measured and its resistivity calculated. Response Surface Methodology (RSM) design of experiments (DOE) analysis was used as the tool to fit the data to establish a model and identify trends for the parameters studied. Profilometry was used to examine film surface uniformity. 3D optical microscopy was used to investigate film morphology and determine film thickness, and to relate these data back to solution dispersion conditions and dried film resistances. The lowest dried film resistivity (0.012 ohm-cm) was obtained at the highest levels of parameters studied in the DOE. Smaller solution particle size resulted in lower dried film surface roughness and better film uniformity.  相似文献   
102.
103.
A novel micro matrix solid phase dispersion method was successfully used for the extraction of quaternary alkaloids in Phellodendri chinensis cortex. The elution of target compounds was accomplished with sodium hexanesulfonate as the eluent solvent. A neutral ion pair was formed between ion-pairing reagent and positively charged alkaloids in this process, which was beneficial for selectively extraction of polar alkaloids. Several parameters were optimized and the optimal conditions were listed as follows: silica gel as the sorbent, silica to sample mass ratio of 1:1, the grinding time of 1 min. The exhaustive elution of targets was achieved by 200 µL methanol/water (9:1) containing 150 mM sodium hexane sulfonate at pH 4.5. The method validation covered linearity, recovery, precision of intraday and interday, limits of detection, limits of quantitation, and repeatability. This established method was rapid, simple, environmentally friendly, and highly sensitive.  相似文献   
104.
This work reports the advantages of using glassy carbon electrodes modified with multiwall carbon nanotubes (MWCNT) dispersed in polyethylenimine (PEI). The presence of MWCNTs wrapped by PEI largely facilitated the strong adsorption of uric acid (UA) and allowed its highly sensitive and selective quantification even in the presence of high excess of ascorbic acid. The selected conditions for the electrochemical sensing were 5 s accumulation at ?0.300 V under stirring and quantification in a 0.050 M phosphate buffer solution pH 7.40 by differential pulse voltammetry adsorptive‐stripping after medium exchange. The platform allowed the successful application in the quantification of UA in urine.  相似文献   
105.
A series of amino-acid-based amphiphilic diblock copolymer nano-objects having different morphologies were developed by reversible addition–fragmentation chain-transfer (RAFT) dispersion polymerization of styrene (St) in methanol. This was mediated by six different hydrophilic poly(N-acryloyl amino acid) macro-chain transfer agents (CTAs), including three carboxylic-acid-containing ones, poly(N-acryloyl-l -proline) (PAProOH), poly(N-acryloyl-4-trans-hydroxy-l -proline) (PAHypOH), and poly(N-acryloyl-l -threonine) (PAThrOH) prepared by RAFT polymerization, and their methyl ester forms, PAProOMe, PAHypOMe, and PAThrOMe. The effects of polymerization conditions on RAFT dispersion polymerization of St using a dithiocarbamate-terminated PAProOH was investigated. A systematic study of the effects of monomer conversion and concentration afforded the formation of various morphologies (i.e., spheres, worms, and vesicles). The effects of hydrogen-bonding and ionic interactions of the macro-CTAs on the assembled structures of the nano-objects were evaluated using six different macro-CTAs. Transforming the products from methanol to water via dialysis produced amino-acid-based block copolymer nano-objects, exhibiting pH-responsive morphological change, in aqueous solution.  相似文献   
106.
The generalized thermoelasticity theory based upon the Green and Naghdi model III of thermoelasticity as well as the Eringen's nonlocal elasticity model is used to study the propagation of harmonic plane waves in a nonlocal thermoelastic medium. We found two sets of coupled longitudinal waves, which are dispersive in nature and experience attenuation. In addition to the coupled waves, there also exists one independent vertically shear-type wave, which is dispersive but experiences no attenuation. All these waves are found to be influenced by the elastic nonlocality parameter. Furthermore, the shear-type wave is found to face a critical frequency, while the coupled longitudinal waves may face critical frequencies conditionally. The problem of reflection of the thermoelastic waves at the stress-free insulated and isothermal boundary of a homogeneous, isotropic nonlocal thermoelastic half-space has also been investigated. The formulae for various reflection coefficients and their respective energy ratios are determined in various cases. For a particular material, the effects of the angular frequency and the elastic nonlocal parameter have been shown on phase speeds and the attenuation coefficients of the propagating waves. The effect of the elastic nonlocality on the reflection coefficients and the energy ratios has been observed and depicted graphically. Finally, analysis of the various results has been interpreted.  相似文献   
107.
《Mendeleev Communications》2020,30(6):731-733
  1. Download : Download high-res image (94KB)
  2. Download : Download full-size image
  相似文献   
108.
CCSD(T)/CBS and DFT methods are employed to study the stacking interactions of acetylacetonate‐type (acac‐type) chelates of nickel, palladium, and platinum with benzene. The strongest chelate–aryl stacking interactions are formed by nickel and palladium chelate, with interaction energies of −5.75 kcal mol−1 and −5.73 kcal mol−1, while the interaction of platinum chelate is weaker, with interaction energy of −5.36 kcal mol−1. These interaction energies are significantly stronger than stacking of two benzenes, −2.73 kcal mol−1. The strongest nickel and palladium chelate–aryl interactions are with benzene center above the metal area, while the strongest platinum chelate–aryl interaction is with the benzene center above the C2 atom of the acac‐type chelate ring. These preferences arise from very different electrostatic potentials above the metal ions, ranging from very positive above nickel to slightly negative above platinum. While the differences in electrostatic potentials above metal atoms cause different geometries with the most stable interaction among the three metals, the dispersion (correlation energy) component is the largest contribution to the total interaction energy for all three metals.  相似文献   
109.
A general dispersion relation is derived for a relativistic rectilinear electron beam of arbitrary momentum distributions interacting with a dielectric in a guide magnetic field, on the basis of Maxwell equations and the relativistic Vlasov equation. The instability occurs when the beam velocity exceeds the wave phase velocity in the medium. The linear wave dispersion relation, growth rate, spatial growth rate are studied analytically for delta and Lorentzian distributions of beam momentums in detail. The results are of importance for a new kind of high-power microwave generation or amplification devices based on anomalous Doppler effect.  相似文献   
110.
《Soft Materials》2013,11(2-3):109-123
Abstract

We have systematically investigated the production of “nanoemulsions,” droplets of one liquid phase in another immiscible liquid phase that have diameters less than 100 nm. Our approach relies on a combination of extreme shear due to multipass, high‐pressure microfluidic injection and systematic control of the emulsion's composition. By repeatedly shearing a silicone oil‐in‐water emulsion in an inhomogeneous extensional shear flow, the multipass approach enables us to reduce the droplet polydispersity and average radius. Using dynamic light scattering, we study the changes in the average radius, ?a?, as a function of the number of passes, driving injection pressure (i.e., shear rate), droplet volume fraction, surfactant concentration, and droplet oil viscosity. The smallest nanoemulsion that we obtain has ?a?=18 nm. At large droplet volume fractions φ≥0.65, we observe phase inversion, rather than a reduction in the droplet size. This provides evidence that droplet coalescence can occur during extreme shear, even when a significant excess of a strongly stabilizing surfactant is present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号