首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   6篇
  国内免费   89篇
化学   429篇
晶体学   1篇
力学   4篇
数学   10篇
物理学   67篇
  2024年   4篇
  2023年   51篇
  2022年   18篇
  2021年   11篇
  2020年   7篇
  2019年   14篇
  2018年   9篇
  2017年   10篇
  2016年   13篇
  2015年   7篇
  2014年   10篇
  2013年   19篇
  2012年   20篇
  2011年   29篇
  2010年   19篇
  2009年   30篇
  2008年   29篇
  2007年   30篇
  2006年   37篇
  2005年   17篇
  2004年   21篇
  2003年   14篇
  2002年   4篇
  2001年   7篇
  2000年   13篇
  1999年   6篇
  1998年   12篇
  1997年   13篇
  1996年   7篇
  1995年   2篇
  1994年   7篇
  1993年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有511条查询结果,搜索用时 15 毫秒
441.
Oily sewage poses a serious environmental risk normally; thus, herein, the modified guar gum (GG-SH) was prepared through rapid condensation reaction between polysaccharide and stearic hydrazide. GG-SH exhibited high removal efficiency of crude oil, the maximum adsorption capacity was calculated to be 2157.3 mg?g-1. The kinetics and isotherm statistical theories showed that the sorption of crude oil onto GG-SH was governed by pseudo-second-order, and Langmuir models, respectively. The removal rate was still high after six cycles of regeneration, indicating an outstanding technique to prepare polysaccharide-based material for the oily sewage treatment with high efficiency and recyclability.  相似文献   
442.
《印度化学会志》2023,100(2):100899
pH shifting effect on the adsorption of anionic RBB dye was tested by using untreated and CTAB-treated SBP as adsorbent in both batch and continuous systems. Characterization of the sorbents revealed the effects of surface modification. Enhanced binding sites and more porous surface structure resulted in improved adsorption capability. Flow rate and initial RBB concentration effects were tested in packed bed column. Optimum pH value of the adsorption, which was determined as 2.0 in the batch studies with untreated SBP, shifted to 8.0 with 20 g/L CTAB treated SBP. Experimental data in column studies showed the decreasing capacity with increasing flow rate and enhanced performance with increasing inlet RBB concentration for both sorbents. Maximum capacities of the columns were found as 36.9 and 2.6 mg/g with dried SBP at pH 2.0 and 8.0, respectively, at a maximum inlet RBB concentration of 500 mg/L and a minimum flow rate of 0.8 mL/min. The highest capacity value at pH 8.0 was found as 140.0 mg/g under the same operating conditions, which reveals positive effect of the treatment on adsorptive performance. Langmuir isotherm was found to be most convenient model for the all equilibrium cases in the column. Moreover, Thomas model accurately predicted the breakthrough curves of each system. This is the first study reporting the modeling data of an anionic dye adsorption in a packed bed column by using modified SBP.  相似文献   
443.
Mitochondrial RNA (mtRNA) plays a critical role in synthesis of mitochondrial proteins. Interfering mtRNA is a highly effective way to induce cell apoptosis. Herein, we report a near-infrared (NIR) light-mediated mitochondrial RNA modification approach for long-term imaging and effective suppression of tumors. A tumor-targetable NIR fluorescent probe f-CRI consisting of a cyclic RGD peptide, a NIR fluorophore IR780, and a singlet oxygen (1O2)-labile furan group for RNA modification was rationally designed and synthesized. This probe was demonstrated to dominantly accumulate in cellular mitochondria and could be covalently conjugated onto mtRNA upon 808 nm irradiation resulting in prolonged retention in tumors. More notably, this covalent modification of mtRNA by f-CRI could perturb the function of mitochondria leading to remarkable tumor suppression. We thus envision that our current approach would offer a potential approach for cancer RNA interference therapeutics.  相似文献   
444.
Peptide engineering efforts have delivered drugs for diverse human diseases. Side chain alteration is among the most common approaches to designing new peptides for specific applications. The peptide backbone can be modified as well, but this strategy has received relatively little attention. Here we show that new and favorable contacts between a His side chain on a target protein and an aromatic side chain on a synthetic peptide ligand can be engineered by rational and coordinated side chain modification and backbone extension. Side chain modification alone was unsuccessful. Binding measurements, high-resolution structural studies and pharmacological outcomes all support the synergy between backbone and side chain modification in engineered ligands of the parathyroid hormone receptor-1, which is targeted by osteoporosis drugs. These results should motivate other structure-based designs featuring coordinated side chain modification and backbone extension to enhance the engagement of peptide ligands with target proteins.  相似文献   
445.
Non-activated esters are prominently featured functional groups in polymer science, as ester functional monomers display great structural diversity and excellent compatibility with a wide range of polymerization mechanisms. Yet, their direct use as a reactive handle in post-polymerization modification has been typically avoided due to their low reactivity, which impairs the quantitative conversion typically desired in post-polymerization modification reactions. While activated ester approaches are a well-established alternative, the modification of non-activated esters remains a synthetic and economically valuable opportunity. In this review, we discuss past and recent efforts in the utilization of non-activated ester groups as a reactive handle to facilitate transesterification and aminolysis/amidation reactions, and the potential of the developed methodologies in the context of macromolecular engineering.  相似文献   
446.
Electrochemical CO2 reduction to value-added chemicals or fuels offers a promising approach to reduce carbon emissions and alleviate energy shortage. Cu-based electrocatalysts have been widely reported as capable of reducing CO2 to produce a variety of multicarbon products (e.g., ethylene and ethanol). In this work, we develop sulfur-doped Cu2O electrocatalysts, which instead can electrochemically reduce CO2 to almost exclusively formate. We show that a dynamic equilibrium of S exists at the Cu2O-electrolyte interface, and S-doped Cu2O undergoes in situ surface reconstruction to generate active S-adsorbed metallic Cu sites during the CO2 reduction reaction (CO2RR). Density functional theory (DFT) calculations together with in situ infrared absorption spectroscopy measurements show that the S-adsorbed metallic Cu surface can not only promote the formation of the *OCHO intermediate but also greatly suppress *H and *COOH adsorption, thus facilitating CO2-to-formate conversion during the electrochemical CO2RR.  相似文献   
447.
Multifunctional, water and oil repellent and antimicrobial finishes for cotton fibres were prepared from a commercially available fluoroalkylfunctional water-born siloxane (FAS) (Degussa), nanosized silver (Ag) (CHT) and a reactive organic–inorganic binder (RB) (CHT). Two different application procedures were used: firstly, one stage treatment of cotton fabric samples by FAS sol (i), as well as by a sol mixture constituted from all three precursors (Ag–RB–FAS, procedure 1S) (ii), and secondly, two stage treatment of cotton by Ag–RB sol and than by FAS sol (Ag–RB + FAS, procedure 2S) (iii). The hydrophobic and oleophobic properties of cotton fabrics treated by procedures (i)–(iii) before and after consecutive (up to 10) washings were established from contact angle measurements (water, diiodomethane and n-hexadecane) and correlated with infrared and XPS spectroscopic measurements. The results revealed that even after 10 washing cycles cotton treated with Ag–RB + FAS (2S) retained an oleophobicity similar to that of the FAS treated cotton, while the Ag–RB–FAS (1S) cotton fibres exhibited a loss of oleophobicity already after the second washing, even though fluorine and C–F vibrational bands were detected in the corresponding XPS and IR spectra. The antibacterial activity of cotton treated by procedures (i)–(iii) was tested by its reduction of the bacteria Escherichia coli and Staphylococcus aureus following the AATCC 100-1999 standard method and EN ISO 20743:2007 transfer method. The reduction in growth of both bacteria was nearly complete for the unwashed Ag–RB and Ag–RB–FAS (S1), but for the unwashed Ag–RB + FAS (S2) treated cotton no reduction of S. aureus and 43.5 ± 6.9% reduction of E. coli was noted. After the first washing, the latter two finishes exhibited nearly a complete reduction of E. coli but for the Ag–RB treated cotton the reduction dropped to 88.9 ± 3.4. None of the finishes retained antibacterial properties after 10 repetitive washings. The beneficial and long-lasting low surface energy effect of FAS finishes in the absence of Ag nanoparticles, which led to the “passive” antibacterial properties of FAS treated cotton fabrics, was established by applying the EN ISO 20743:2007 transfer method. The results revealed a reduction in bacteria of about 21.9 ± 5.7% (FAS), 13.1 ± 4.8% (Ag–RB–FAS (S1)) and 41.5 ± 3.7% (Ag–Rb + FAS (S2)), while no reduction of the growth of bacteria was observed for cotton treated with Ag nanoparticles after 10 repetitive washings. The physical properties (bending rigidity, breaking strength, air permeability) of finished cotton samples were determined, and showed increased fabric softness and flexibility as compared to the Ag–RB treated cotton, but a slight decrease of breaking strength in the warp and weft directions, while air permeability decreased for all type of finishes.  相似文献   
448.
使用浓HNO3和浓H2O2对活性炭进行常温氧化改性,用FTIR和N2吸附法对活性炭进行表面分析,用AAS、SEM、XRD研究银在活性炭表面的吸附和分布特征,并研究了载银活性炭的抗茵性能.结果表明,活性炭经浓HNO3常温改性后,比表面积提高,而经浓H2O2常温改性后,比表面积略有下降,但都使活性炭表面含氧基团增加.改性后,活性炭表面增加的含氧基团为[Ag(NH3)2] 的还原吸附提供更多的活性点,使银的吸附量增大5倍多,银颗粒更加密集,大小更加均一.研究表明,载银活性炭具有明显的抗茵作用,其中对金黄色葡萄球菌的杀灭效果优于对大肠杆菌的杀灭效果,氧化改性使载银活性炭抗茵作用显著增强,其中硝酸改性现象更加明显.  相似文献   
449.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes were obtained by surface-coated modification method.  相似文献   
450.
Organic framework materials have shown increasingly promising applications in biomedicine, such as drug delivery and release. In this work, we first synthesized a new hydroxyl-containing imine-linked two-dimensional covalent organic framework (COF) through solvothermal synthesis. Then, the imine group was converted into a benzoxazine group using a cyclization reaction. The results show that the postsynthetic modification did not change the basic framework of the original COF and did not affect the basic properties of the original COF. At the same time, the new benzoxazine group obtained by cyclization gave the COF good antibacterial activity against Escherichia coli and Staphylococcus aureus. The COF efficiency after cyclization was improved, and its antibacterial activity against both bacteria was over 90% compared with the imine-linked COF. Moreover, the benzoxazine-linked COF crystal structure and pore structures were retained, leaving the drug delivery and release functions unaffected. A benzoxazine-linked COF has never been reported because it cannot be synthesized by a direct reaction method. The work in this paper shows that the COFs that cannot be directly synthesized can be obtained through specific postsynthetic modification reactions. This means that more functional COFs can be obtained based on existing COFs, and the diversity of COF types and their potential applications can be further enriched and expanded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号