首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   3篇
  国内免费   11篇
化学   149篇
晶体学   1篇
力学   5篇
数学   2篇
物理学   127篇
  2024年   1篇
  2023年   49篇
  2022年   4篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   6篇
  2016年   8篇
  2015年   5篇
  2014年   12篇
  2013年   16篇
  2012年   12篇
  2011年   21篇
  2010年   6篇
  2009年   18篇
  2008年   9篇
  2007年   12篇
  2006年   9篇
  2005年   13篇
  2004年   15篇
  2003年   5篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1986年   1篇
  1981年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
141.
Pure and Cu doped ZnO nanopowders (5, 10, 15, 20, 25 and 30 at% Cu) have been synthesized using co-precipitation method. Transmission Electron Microscopic analysis has shown the morphology of ZnO nanopowders to be quasi-spherical. Powder X-ray Diffraction studies have revealed the systematic doping of Cu into the ZnO lattice up to 10% Cu, though the peaks corresponding to CuO in 10% Cu are negligibly very small. Beyond this level, there was segregation of a secondary phase corresponding to the formation of CuO. Fourier Transform Infrared spectra have shown a broad absorption band at ∼490 cm−1 for all the samples, which corresponds to the stretching vibration of Zn-O bond. DC electrical resistivity has been found to decrease with increasing Cu content. The activation energy has also been observed to decrease with copper doping i.e. from ∼0.67 eV for pure ZnO to ∼0.41 eV for 30 at% Cu doped ZnO.  相似文献   
142.
GaN layers and Al1−xInxN/AlN/GaN heterostructures have been studied by scanning probe microscopy methods. Threading dislocations (TDs), originating from the GaN (0 0 0 1) layer grown on sapphire, have been investigated. Using Current-Atomic Force Microscopy (C-AFM) TDs have been found to be highly conductive in both GaN and AlInN, while using semi-contact AFM (phase-imaging mode) indium segregation has been traced at TDs in AlInN/AlN/GaN heterostructures. It has been assessed that In segregation is responsible for high conductivity at dislocations in the examined heterostructures.  相似文献   
143.
Atom-probe investigations of fine-scale features in intermetallics   总被引:2,自引:0,他引:2  
Intermetallics have been studied by means of Atom Probe Field Ion Microscopy. Atom-Probe techniques have been used to determine the phase composition and to study the role and the influence of additional elements. The use of the Tomographic Atom Probe makes it possible to map out the distribution of chemical species in a small volume of the material at a near atomic scale. This has been particularly used in order to study segregation of additional elements at interfaces or planar and linear defects in TiAl base and FeAl base alloys.  相似文献   
144.
Photonic crystals form an exciting new class of optical materials that can greatly affect optical propagation and light emission. As the relevant length scale is smaller than the wavelength of light, sub-wavelength detection forms an important ingredient to obtain full insight in the physical properties of photonic crystal structures. Spatially resolved near-field measurements allow the observation of phenomena that remain hidden to diffraction-limited far-field investigations. Here, we present near-field investigations in both collection and illumination modes that highlight the power of local studies. We show how propagation losses are unambiguously determined and that light detected in far-field transmission can actually contain contributions from different, sometimes unexpected, local scattering phenomena. Simulations are used to support our findings. Furthermore, it is shown that local coupling of light to a thick three-dimensional photonic crystal is position-dependent and that the spatial distribution of the coupling efficiency itself is frequency-dependent.  相似文献   
145.
The direct imaging of photonic nanojets in different dielectric microdisks illuminated by a laser source is reported. The SiO2 and Si3N4 microdisks are of height 650 nm with diameters ranging from 3 μm to 8 μm. The finite-difference time-domain calculation is used to execute the numerical simulation for the photonic nanojets in the dielectric microdisks. The photonic nanojet measurements are performed with a scanning optical microscope system. The photonic nanojets with high intensity spots and low divergence are observed in the dielectric microdisks illuminated from the side with laser source of wavelengths 405 nm, 532 nm and 671 nm. The experimental results of key parameters are compared to the simulations and in agreement with theoretical results. Our studies show that photonic nanojets can be efficiently created by a dielectric microdisk and straightforwardly applied to nano-photonics circuit.  相似文献   
146.
In this study, biodegradable polymeric nanocapsules were prepared by sequential deposition of food-grade polyelectrolytes through the self-assembling process onto the oil (medium chain triglycerides) droplets enriched with curcumin (lipophilic bioactive compound). Optimum conditions were used to prepare ultrasound-assisted nanoemulsions stabilized by octenyl-succinic-anhydride (OSA)-modified starch. Negatively charged droplets (−39.4 ± 1.84 mV) of these nanoemulsions, having a diameter of 142.7 ± 0.85 nm were used as templates for the fabrication of nanocapsules. Concentrations of layer-forming cationic (chitosan) and anionic (carboxymethylcellulose) biopolymers were optimized based on the mean droplet/particle diameter (MDD/MPD), polydispersity index (PDI) and net charge on the droplets/capsules. Prepared core–shell structures or nanocapsules, having MPD of 159.85 ± 0.92 nm, were characterized by laser diffraction (DLS), ζ-potential (ZP), atomic force microscopy (AFM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Furthermore, physical stability of curcumin-loaded nanocapsules in suspension was determined and compared at different storage temperatures. This study may provide information regarding the formation of ultrasound-assisted polymeric nanocapsules from the nanoemulsion templates which could be helpful in the development of delivery systems for lipophilic food bioactives.  相似文献   
147.
Thermal decompositions of polyisoprene, poly(p-isopropyl α-methylstyrene) (PPIPαMS), and poly(isoprene/p-isopropyl α-methylstyrene) (sample M-32) were carried out at various temperatures in the range 200–340° C in a differential thermo-gravimetric apparatus. The undecomposed polymers as well as their decomposed residues were analyzed by gel-permeation chromatography (GPC), infrared spectroscopy (IR), and nuclear magnetic resonance (NMR). Based on the changes observed in the distribution of molecular weights, depolymerization is the predominant step in the decomposition of PPIPAMS and polymer M-32, whereas random scissions predominate in the case of polyisoprene. The combined data of GPC, IR, and NMR indicate that only interchain reactions leading to the formation of cyclized products are present in the decomposition of polyisoprene while interchain as well as intrachain reactions are operative in the case of polymer M-32.  相似文献   
148.
Scanning electrochemical microscopy (SECM), electrochemical impedance spectroscopy (EIS) and scanning electrochemical impedance microscopy (SEIM) were used to investigate electrochemical activity of active and inactivated yeast Saccharomyces cerevisiae cells. SEIM experiment was performed using a unique electrochemical impedance spectrometer with a fast Fourier transform (FFT‐EIS) function, which enabled simultaneously perturb/evaluate electrochemical system at 50 frequencies. This allowed very quick observing the differences between impedance spectra, which were taken every few seconds. Therefore, we were able to apply SEIM for relatively fast determination of electrochemical impedance dependence on the distance between ultramicroelectrode (UME) and surface modified by immobilized yeast cells. It was determined that electrochemical activity and ‘breathing’ (a consumption of dissolved oxygen) of yeast can be electrochemically observed when the distance between UME and surface of yeast cells is in the range from 0 μm to 25 μm. Therefore, 25 μm is the maximum distance suitable for efficient investigation of yeast cell activity when experiments are performed in FFT‐SEIM mode. Charge transfer resistance of active and inactivated yeast cells was determined using EIS. It was calculated that charge transfer resistance of active yeast cells is 1.5 times lower than that of inactivated yeast cells. Lipophilic vitamin K3 (Vit‐K3) and hydrophilic vitamin K1 (Vit‐K1) were mixtured and used as redox mediators for charge transfer from yeast cells.  相似文献   
149.
为定量测试喷射沉积合金GP区周围的晶格应变的分布,利用喷射成形技术制备了Al12Zn2.4Mg1.1Cu合金。随后对合金进行热挤压、758K固溶2小时和393K时效20小时处理。利用高分辨透射电子显微镜(High Resolution Transmission Electron Microscopy,HRTEM)和几何相位分析(Geometric Phase Analysis,GPA)软件对GP区的结构和应变场进行了测量和分析。结果表明,GP区附近的应变值在各方向差别较大,沿GP区惯习面法线方向的应变最大(εxx=-0.092),与惯习面平行方向上的应变最小(εyy=-0.004)。该项结果可解释GP区附近位错运动的差异:由于应变场在各方向上存在较大差别,产生的应变强化效果不同,导致阻碍位错运动的能力也有所不同。  相似文献   
150.
The present work aims to elucidate the physicochemical factors determining the microstructure of Si-O-C glasses derived from a polymethylsilsesquioxane powder pyrolyzed at 200-1300 °C in helium atmosphere. The pyrolysis behavior of the powder was studied by thermogravimetry coupled with mass spectrometry. The chemical composition of the glasses was determined by elemental analysis while the microstructure was studied by optical microscopy combined with scanning and transmission electron microscopy. The degradation of the polymer proceeds by a three-stage decomposition characterized by different mass losses as well as by different amount and type of evolved gaseous species. The derived glasses contain networks of pores and bubbles with diameters more than 0.1 mm. The increasing thermal treatment of the polymer above 200 °C does not lead to the disappearance of macropores. Micrometer-sized amorphous filaments are observed in porous interiors. A formation mechanism of pores and filaments is proposed. Polymer swelling accompanied by pore coagulation and gas release is believed to be responsible for the spatial separation of oligomers forming filaments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号