首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   15篇
  国内免费   7篇
化学   19篇
晶体学   4篇
力学   35篇
综合类   5篇
数学   82篇
物理学   44篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   13篇
  2016年   3篇
  2015年   3篇
  2014年   9篇
  2013年   16篇
  2012年   6篇
  2011年   14篇
  2010年   20篇
  2009年   10篇
  2008年   15篇
  2007年   8篇
  2006年   9篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
81.
本文利用抽样分布理论,对以σ衡量质量的多等级产品质量检验问题,提出了一个具体的处理方法,该方法给出了计算抽样数的公式,也给出了确定各等级之间距离的计算方法,揭示了抽样置信度、抽样数n、等级距离三者之间的关系。并按本文的方法,提出了对广东商检局出口桑蚕丝原抽样方案的修改意见。  相似文献   
82.
A solution adaptive grid (SAG) method which redistributes the nodal points of a function according to its curvature is presented. A single, user-selected step parameter, P, is available for controlling the maximum step size, allowing the application of the technique to a wide variety of problems. Three test cases are cited: (1) the 1-dimensional inviscid Burgers equation, (2) the Falkner-Skan equation and (3) the finite-volume form of the Navier-Stokes equations for transonic aerofoil flows. In all three cases, significant solution improvement in terms of accuracy and convergence acceleration were achieved.  相似文献   
83.
Numerical simulation of open water flow in natural courses seems to be doomed to one- or two-dimensional numerical simulations. Investigations of flow hydrodynamics through the application of three-dimensional models actually have very few appearances in the literature. This paper discusses the development and the initial implementation of a general three-dimensional and time-dependent finite volume approach to simulate the hydrodynamics of surface water flow in rivers and lakes. The slightly modified Navier-Stokes equations, together with the continuity and the water depth equations, form the theoretical basis of the model. A body-fitted time-dependent co-ordinate system has been used in the solution process, in order to accommodate the commonly complex and irregular boundary and bathymetry of natural water courses. The proposed adaptive technique allows the mesh to follow the movement of the water boundaries, including the unsteady free-water surface. The primitive variable equations are written in conservative form in the Cartesian co-ordinate system, and the computational procedure is executed in the moveable curvilinear co-ordinate system. Special stabilizing techniques are introduced in order to eliminate the oscillating behaviour associated with the finite volume formulation. Also, a new and comprehensive approximation for the pressure forces at the faces of a control volume is presented. Finally, results of several tests demonstrate the performance of the finite volume approach coupled with the adaptive technique employed in the three-dimensional time-dependent mesh system.  相似文献   
84.
Head-related transfer functions (HRTFs) describe the directional filtering of the incoming sound caused by the morphology of a listener’s head and pinnae. When an accurate model of a listener’s morphology exists, HRTFs can be calculated numerically with the boundary element method (BEM). However, the general recommendation to model the head and pinnae with at least six elements per wavelength renders the BEM as a time-consuming procedure when calculating HRTFs for the full audible frequency range. In this study, a mesh preprocessing algorithm is proposed, viz., a priori mesh grading, which reduces the computational costs in the HRTF calculation process significantly. The mesh grading algorithm deliberately violates the recommendation of at least six elements per wavelength in certain regions of the head and pinnae and varies the size of elements gradually according to an a priori defined grading function. The evaluation of the algorithm involved HRTFs calculated for various geometric objects including meshes of three human listeners and various grading functions. The numerical accuracy and the predicted sound-localization performance of calculated HRTFs were analyzed. A-priori mesh grading appeared to be suitable for the numerical calculation of HRTFs in the full audible frequency range and outperformed uniform meshes in terms of numerical errors, perception based predictions of sound-localization performance, and computational costs.  相似文献   
85.
Mesh deformation technique is widely applied in numerical simulations involving moving boundaries, and the deforming capability and efficiency is the key of it. In this paper, we present a new point-by-point mesh deformation method based on the support vector machine. This proposed method, to certain extent, is similar to the radial basis function (RBF) interpolation method with data reduction, but the new approach selects key boundary points automatically without specifying an initial set, and the function coefficients are obtained by solving a simple quadratic programming problem. Therefore, it is more efficient than the RBF method. Typical 2D/3D applications and realistic unsteady flow over a pitching airfoil are simulated to demonstrate the capability of the new method. With proper setting, the quality of the deformed meshes after using the new method is comparable to that of the RBF method, and the performance is improved by up to 7 ×.  相似文献   
86.
A class of finite-difference interface schemes suitable for two-dimensional cell-centered grids with patch-refinement and step-changes in resolution is presented. Grids of this type are generated by adaptive mesh refinement methods according to resolution needs dictated by the physics of the problem being modeled. For these grids, coarse and fine nodes are not aligned at the mesh interfaces, resulting in hanging nodes. Three distinct geometries are identified at the interfaces of a domain with interior patch-refinement: edges, concave corners and convex corners. Asymptotic stability in time of the numerical scheme is achieved by imposing a summation-by-parts condition on the interface closure, which is thus also nondissipative. Interface stencils corresponding to an explicit fourth-order finite-difference scheme are presented for each geometry. To preserve stability, a reduction in local accuracy is required at the corner geometries. It is also found that no second-order accurate solution exists that satisfies the summation-by-parts condition. Tests using the 2-D scalar advection equation and an inviscid compressible vortex support the stability and accuracy of these stencils for both linear and nonlinear problems.  相似文献   
87.
The multiphase heat transfer could be enhanced by creating thin liquid film on the wall. The phase separation concept is called due to the separated flow paths of liquid and gas over the tube cross section to yield thin liquid film. Our proposed heat transfer tube consists of an annular region close to the wall and a core region, interfaced by a suspending mesh cylinder in the tube. The heat transfer tube is a multiscale system with micron scale of mesh pores, miniature scale of annular region and macroscale of tube diameter and length. Great effort has been made to link from micron scale to macroscale. The Volume of Fluid (VOF) method simulates air/water two-phase flow for vertical upflow. The three-dimensional system was successfully converted to a two-dimensional one by using three equivalent criteria for mesh pores. The non-uniform base grid generation and dynamic grid adaption method capture the bubble interface. The numerical results successfully reproduce our experimental results. The numerical findings identify the following mechanisms for the enhanced heat transfer: (a) counter-current flow exists with upward flow in the annular region and downward flow in the core region; (b) void fractions are exact zero in the core region and higher in the annular region; (c) the liquid film thicknesses are decreased to 1/6–1/3 of those in the bare tube section; (d) the gas–liquid mixture travels much faster in the annular region than in the bare tube; (e) three-levels of liquid circulation exists: meter-scale bulk liquid circulation, moderate-scale liquid circulation around a single-elongated-ring-slug-bubble, and microliquid circulation following the ring-slug-bubble tails. These liquid circulations promote the fluid mixing over the whole tube length and within the radial direction. The modulated parameters of void fractions, velocities and liquid film thicknesses in the annular region and three-levels of liquid circulation are greatly beneficial for the multiphase heat transfer enhancement.  相似文献   
88.
Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral angles are now measured in a metric depending on the diffusion matrix of the underlying problem. Several variants of the new condition are obtained. Based on one of them, two metric tensors for use in anisotropic mesh generation are developed to account for DMP satisfaction and the combination of DMP satisfaction and mesh adaptivity. Numerical examples are given to demonstrate the features of the linear finite element method for anisotropic meshes generated with the metric tensors.  相似文献   
89.
The mesh transformation method is applied in a finite element approximation to a multi-well problem. It is proved that, compared with standard finite element methods, significantly higher convergence rate for the finite element approximations of multi-level microstructures can be obtained by combining the mesh transformation method with the periodic relaxation technique. Numerical examples are given to show the method can be efficiently implemented in computing multi-level microstructures.  相似文献   
90.
We present a 2D triangle mesh simplification model which is able to produce high quality approximations of any original planar mesh, regardless of the shape of the original mesh. This method consists of two phases: a self-organizing algorithm and a triangulation algorithm. The self-organizing algorithm is an unsupervised incremental clustering algorithm which provides us a set of nodes representing the best approximation of the original mesh. The triangulation algorithm reconstructs the simplified mesh from the planar points obtained by the self-organizing training process. Some examples are detailed with the purpose of demonstrating the ability of the model to perform the task of simplifying an original mesh with irregular shape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号