首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  免费   89篇
  国内免费   140篇
化学   819篇
晶体学   17篇
力学   27篇
综合类   3篇
数学   6篇
物理学   120篇
  2024年   1篇
  2023年   24篇
  2022年   30篇
  2021年   34篇
  2020年   60篇
  2019年   31篇
  2018年   32篇
  2017年   57篇
  2016年   69篇
  2015年   46篇
  2014年   45篇
  2013年   82篇
  2012年   62篇
  2011年   62篇
  2010年   50篇
  2009年   52篇
  2008年   47篇
  2007年   39篇
  2006年   48篇
  2005年   22篇
  2004年   19篇
  2003年   11篇
  2002年   13篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   4篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1982年   2篇
排序方式: 共有992条查询结果,搜索用时 343 毫秒
111.
A unique fabrication process of low molar mass, crystalline polypeptoid fibers is described. Thermoresponsive fiber mats are prepared by electrospinning a homogeneous blend of semicrystalline poly(N‐(n‐propyl) glycine) (PPGly; 4.1 kDa) with high molar mass poly(ethylene oxide) (PEO). Annealing of these fibers at ≈100 °C selectively removes the PEO and produces stable crystalline fiber mats of pure PPGly, which are insoluble in aqueous solution but can be redissolved in methanol or ethanol. The formation of water‐stable polypeptoid fiber mats is an important step toward their utilization in biomedical applications such as tissue engineering or wound dressing.

  相似文献   

112.
White‐light‐emitting protocols based on organic materials have received much attention in the academic and industrial fields because of their potential applications in full‐color displays and back‐lighting units for liquid crystal displays. Here, the attempt is made to fabricate white‐light‐emitting, electrospun poly(ethylene oxide) (PEO) sheets containing controlled concentrations of a single light‐emitting material composed of a type of hyperbranched conjugated polymer (HCP). The HCPs used here have the unique property of exhibiting a variety of fluorescence colors in the electrospun matrix that is caused by the different distances between HCP chains depending on their concentrations, leading to different degrees of intermolecular energy transfer. Therefore, the emission colors of the PEO sheets can be easily manipulated by simply varying the HCP concentrations in the PEO matrix. The resulting method for fabricating nanofibers comprising light‐emitting materials in the polymer matrix has great potential for easy fabrication of cost‐effective, flexible light‐emitting system.

  相似文献   

113.
A new method for fabricating hydrogels with intricate control over hierarchical 3D porosity using microfiber porogens is presented. Melt electrospinning writing of poly(ε‐caprolactone) is used to create the sacrificial template leading to hierarchical structuring consisting of pores inside the denser poly(2‐oxazoline) hydrogel mesh. This versatile approach provides new opportunities to create well‐defined multilevel control over interconnected pores with diameters in the lower micrometer range inside hydrogels with potential applications as cell scaffolds with tunable diffusion and transport of, e.g., nutrients, growth factors or therapeutics.

  相似文献   

114.
Directed assembly of triblock copolymer worms to produce nanostructured fibers is achieved via colloid electrospinning. These copolymer worms are conveniently prepared by polymerization‐induced self‐assembly in concentrated aqueous dispersion. Addition of a second water‐soluble component, poly(vinyl alcohol), is found to be critical for the production of well‐defined fibers: trial experiments performed using the worms alone produce only spherical microparticles. Transmission electron microscopy studies confirm that the worm morphology survives electrospinning and the worms become orientated parallel to the main axis of the fibers during their generation. The average deviant angle (θdev) between the worm orientation and fiber axis decreases from 17° to 9° as the worm/PVA mass ratio increases from 1.15:1 to 5:1, indicating a greater degree of worm alignment within fibers with higher worm contents and smaller fiber diameters. Thus triblock copolymer fibers of ≈300 ± 120 nm diameter can be readily produced that comprise aligned worms on the nanoscale.

  相似文献   

115.
以二硫代二乙酸(DTDGA)与乙二醇(EG)单体为原料,对甲苯磺酸(PTSA)为催化剂,采用熔融缩聚法合成了聚二硫代二乙酸乙二醇酯,成功地将二硫键引入到聚酯中,研究了反应温度及反应时间对分子量的影响,并用凝胶渗透色谱(GPC)、热失重(TG)、核磁共振(1 H-NMR)分析方法对产物进行表征。  相似文献   
116.
117.
In this study, a novel ion conductive polyimide (PI) nanofiber reinforced photocured hybrid electrolyte has been fabricated. Polyimide fibers were fabricated with the reaction between 4,4′‐oxydianiline (ODA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) followed by electrospinning and thermal imidization methods. Then, PI electrospun fibers were dipped into hybrid resin formulation containing bisphenol A ethoxylate dimethacrylate (BEMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA) and 3‐(methacryloyloxy) propyltrimethoxysilane (MEMO) and then photocured to prepare PI nanofiber reinforced electrolyte membrane. Photocured membranes were soaked into lithium hexafluorophosphate (LiPF6) before measuring electrochemical stability and ionic conductivity of hybrid polyelectrolyte. The chemical structure and electrochemical performance of the electrolytes were examined by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and scanning electron microscopy (SEM) analysis. The incorporation of MEMO into organic matrix effectively increased the modulus from 2.83 to 5.91 MPa. The obtained results showed that a suitable electrolyte for Li‐ion batteries with high lithium uptake ratio, high conductivity (7.2 × 10?3 S cm?1) at ambient temperature and wide stability window above 5.5 V had been prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
118.
Calix[4]arene-based cation receptor 1 has been synthesised by following a multi-step synthetic procedure. The fluorescence properties of 1 upon the addition of various metal ions were investigated by fluorescence spectroscopy. As a result, it was revealed that 1 displayed dramatic quenching effect upon the exposure to Cs+. In contrast, no significant quenching effects were observed upon the addition of other metal ions such as Li+, Na+, K+, Mg2+, Ca2+, Sr2+, Ag+, Zn2+ and Ni2+. Compound 1 was also found by Job plot to form a 1:1 complex with Cs+. In addition, we also prepared 1-embedded electrospun nanofibrous film (NF-1) as an adsorbent for Cs+. NF-1 is proved to adsorb Cs+ effectively from an aqueous solution, indicating that it would be usefully utilised as an adsorbent to remove Cs+.  相似文献   
119.
Oligo(Glu70co‐Leu30), a peptide synthesized by protease catalysis, is functionalized at the N‐terminus with a 4‐pentenoyl unit and grafted to polyLSL[6′Ac,6″Ac], a glycopolymer prepared by ring‐opening metathesis polymerization of lactonic sophorolipid diacetate. First, polyLSL[6'Ac,6”Ac] fiber mats are fabricated by electrospinning. Oxidation of the fiber mats and subsequent reaction with cysteamine lead to thiol‐functionalized fiber mats with no significant morphology changes. Grafting of the alkene‐modified oligopeptide to thiol‐functionalized polyLSL[6′Ac,6″Ac] fiber mats is achieved via “thiol‐ene” click reaction. X‐ray photoelectron spectroscopy analysis to characterize peptide grafting reveals that about 50 mol% of polyLSL[6′Ac,6′′Ac] repeat units at fiber surfaces are decorated with a peptide moiety, out of which about 1/3 of the oligo(Glu70co‐Leu30) units are physically adsorbed to polyLSL[6′Ac,6′′Ac]. The results of this work pave the way to precise engineering of polyLSL fiber mats that can be decorated with a potentially wide range of molecules that tailor surface chemistry and biological properties.

  相似文献   

120.
Viscoelastic behavior, phase morphology and flow conditions relationships in polymer/rubber blends have been investigated. The importance of such correlations is illustrated on polymethylmethacrylate (PMMA)/rubber blends subjected to different flow conditions both under small and large deformations. In small-amplitude oscillatory shear (the morphology does not change during the flow) the elastic modulus G of the concentrated blends shows a secondary plateau, G p , in the low frequency region. This solid-like behavior appears for rubber particle contents beyond the percolation threshold concentration (15%). Morphological observations revealed that for concentrations higher than 15%, the particles are dispersed in a three-dimensional network-type structure.In capillary flow it was found that the network-type structure was destroyed and replaced by an alignment of particles in the flow direction. This morphological modification resulted in a decrease in both viscosity and post-extrusion swell of the blends. Morphological observations revealed that the ordered structure in the flow direction was concentrated only in the skin region of the extrudate, where the shear stress is higher than the secondary plateau, G p . A simple kinetic mechanism is proposed to explain the observed morphology.Similarly, steady shear measurements performed in the cone-and-plate geometry revealed alignment of particles in the flow direction for shear stress values higher than Gp.Presented in part at the Symposium Recent Developments in Structured Continua Montréal (Canada) 26–28 May 1993 and at the 45th Canadian Chemical Engineering Conference, Quebec, October 15–18 (1995)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号