首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2296篇
  免费   131篇
  国内免费   260篇
化学   2313篇
晶体学   31篇
力学   4篇
综合类   2篇
数学   1篇
物理学   336篇
  2024年   3篇
  2023年   51篇
  2022年   23篇
  2021年   30篇
  2020年   57篇
  2019年   47篇
  2018年   53篇
  2017年   41篇
  2016年   54篇
  2015年   59篇
  2014年   87篇
  2013年   137篇
  2012年   236篇
  2011年   143篇
  2010年   87篇
  2009年   129篇
  2008年   135篇
  2007年   158篇
  2006年   132篇
  2005年   123篇
  2004年   118篇
  2003年   93篇
  2002年   70篇
  2001年   67篇
  2000年   71篇
  1999年   68篇
  1998年   78篇
  1997年   53篇
  1996年   39篇
  1995年   39篇
  1994年   41篇
  1993年   30篇
  1992年   37篇
  1991年   28篇
  1990年   14篇
  1989年   19篇
  1988年   11篇
  1987年   2篇
  1986年   7篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2687条查询结果,搜索用时 15 毫秒
91.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   
92.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   
93.
QM/MM methods have been developed as a computationally feasible solution to QM simulation of chemical processes, such as enzyme-catalyzed reactions, within a more approximate MM representation of the condensed-phase environment. However, there has been no independent method for checking the quality of this representation, especially for highly nonisotropic protein environments such as those surrounding enzyme active sites. Hence, the validity of QM/MM methods is largely untested. Here we use the possibility of performing all-QM calculations at the semiempirical PM3 level with a linear-scaling method (MOZYME) to assess the performance of a QM/MM method (PM3/AMBER94 force field). Using two model pathways for the hydride-ion transfer reaction of the enzyme dihydrofolate reductase studied previously (Titmuss et al., Chem Phys Lett 2000, 320, 169-176), we have analyzed the reaction energy contributions (QM, QM/MM, and MM) from the QM/MM results and compared them with analogous-region components calculated via an energy partitioning scheme implemented into MOZYME. This analysis further divided the MOZYME components into Coulomb, resonance and exchange energy terms. For the model in which the MM coordinates are kept fixed during the reaction, we find that the MOZYME and QM/MM total energy profiles agree very well, but that there are significant differences in the energy components. Most significantly there is a large change (approximately 16 kcal/mol) in the MOZYME MM component due to polarization of the MM region surrounding the active site, and which arises mostly from MM atoms close to (<10 A) the active-site QM region, which is not modelled explicitly by our QM/MM method. However, for the model where the MM coordinates are allowed to vary during the reaction, we find large differences in the MOZYME and QM/MM total energy profiles, with a discrepancy of 52 kcal/mol between the relative reaction (product-reactant) energies. This is largely due to a difference in the MM energies of 58 kcal/mol, of which we can attribute approximately 40 kcal/mol to geometry effects in the MM region and the remainder, as before, to MM region polarization. Contrary to the fixed-geometry model, there is no correlation of the MM energy changes with distance from the QM region, nor are they contributed by only a few residues. Overall, the results suggest that merely extending the size of the QM region in the QM/MM calculation is not a universal solution to the MOZYME- and QM/MM-method differences. They also suggest that attaching physical significance to MOZYME Coulomb, resonance and exchange components is problematic. Although we conclude that it would be possible to reparameterize the QM/MM force field to reproduce MOZYME energies, a better way to account for both the effects of the protein environment and known deficiencies in semiempirical methods would be to parameterize the force field based on data from DFT or ab initio QM linear-scaling calculations. Such a force field could be used efficiently in MD simulations to calculate free energies.  相似文献   
94.
The resistivity of thin La0.7Sr0.3MnO3 films was first investigated in a wide temperature (T) range (10–750 K). Films grown by different techniques and on several substrates enabled to analyze samples with different amounts of disorder. The aim of this work was to elucidate the nature of the metal–insulator (M–I) transition occurring at T = Tp in these films and its relation with the different kinds of inhomogeneities they could present like intrinsic electric disorder and co-existence of two different electrical and/or magnetic phases. The low-temperature resistivity state was described mostly by a law which scales as T with  ≈ 2.5. This supports the theoretical proposal of single magnon scattering in presence of minority spin states localized by the disorder. In the whole range of temperatures the experimental data are found to be consistent with a phase separation (PS) scenario. In order to go through the origin of the characteristic length scale of inhomogeneity found, preliminarily low frequency noise measurements as a function of T in a range of temperature around the M–I transition were made. The samples used were patterned using photolithography into bridges with various widths and lengths. No clear sign of separation phase dynamic has been observed in our noise measurements. Unexpectedly the normalized Hooge parameter H/n was found not to be volume (Ω) independent. The LSMO electrical properties may strongly be driven by disorder and new design for magnetoresistance sensors may have to take into account their intrinsic PS.  相似文献   
95.
A unique process of chemical oxidation polymerization of aniline using manganese dioxide (MnO2) as the oxidizing agent in an aqueous medium is described. The reaction between aniline and MnO2 follows a mechanism by which the organic monomer is oxidized while the metal oxide undergoes reductive dissolution. The effects of the amount of oxidizing agent and aniline, pH and temperature of the reactive system, type of acid on the yield and conductivity of polyaniline are discussed. The resulting polyaniline was characterized by [R and UV-Vis spectrometry. Polyaniline with a conductivity of 12.5 S/cm was obtained using 0.033 tool of aniline oxidized by 0.023 tool MnO2 in the presence of 100 mL of 2.7 mol/L HCI at 25℃ for 4 h.  相似文献   
96.
李勋  汪正浩 《中国化学》2007,25(3):295-299
A new direct procedure for the determination of inorganic arsenic species was developed by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS) with selective electrochemical reduction. The determination of inorganic arsenic species is based on the fact that As(Ⅲ) shows significantly higher absorbance at low electrolytic currents than As(Ⅴ) in 0.3 mol·L^-1 H2SO4. The electrolytic current used for the determination of As(Ⅲ) without considerable interferences of As(Ⅴ) was 0.4 A, whereas the current for the determination of As(Ⅲ) and As(Ⅴ) was 1.2 A. For equal concentrations of As(Ⅲ) and As(Ⅴ) in a sample, the interferences of As(Ⅴ) during the As(Ⅲ) determination were smaller than 5%. The absorbance for As(Ⅴ) could be calculated by subtracting that for As(Ⅲ) measured at 0.4 A from the total absorbance for As(Ⅲ) and As(Ⅴ) measured at 1.2 A, and then the concentration of As(Ⅴ) can be obtained by its calibration curve at 1.2 A. The methodology developed provided the detection limits of 0.3 and 0.6 ng·mL^-1 for As(Ⅲ) and As(Ⅴ), respectively. The relative standard deviations were of 3.5% for 20 ng·mL^-1 As(Ⅲ) and 3.2% for 20 ng·mL^-1 As(Ⅴ). The method was successfully applied to determination of soluble inorganic arsenic species in Chinese medicine.  相似文献   
97.
The structure of H3Co2[C5H2(t-Bu)3]2 has been analyzed by low-temperature single-crystal neutron diffraction techniques, and shown to consist of two CoCp moieties with three hydride ligands bridging the central Co–Co bond. Despite a fairly extensive twinning problem, the structure could be solved and successfully refined to a final R factor of 9.2% for 2024 reflections. Average molecular parameters in the H3Co2 core of the molecule are as follows: Co–Co=2.275(21) Å, Co–H=1.637(16) Å, HH=2.050(20) Å, Co–H–Co=88.0(9)°, H–Co–H=77.0(7)°. Also included in this paper is a discussion on the molecular dimensions of symmetric hydride-bridged dinuclear systems (M(-H)nM, n=1, 2, 3, 4) that have been studied to date by neutron diffraction.  相似文献   
98.
A flow injection (FI) method with flame atomic absorption spectrometry (FAAS) detection was developed for the determination and speciation of nitrite and nitrate in foodstuffs and wastewaters. The method is based on the oxidation of nitrite to nitrate using a manganese(IV) dioxide oxidant microcolumn where the flow of the sample through the microcolumn reduces the MnO2 solid phase reagent to Mn(II), which is measured by FAAS. The absorbance of Mn(II) are proportional to the concentration of nitrite in the samples. The injected sample volume was 400 μL with a sampling rate of analyses was 90 h−1 with a relative standard deviation better than 1.0% in a repeatability study. Nitrate is reduced to nitrite in proposed FI-FAAS system using a copperized cadmium microcolumn and analyzed as nitrite. The calibration curves were linear up to 20 mg L−1 and 30 mg L−1 with a detection limit of 0.07 mg L−1 and 0.14 mg L−1 for nitrite and nitrate, respectively. The results exhibit no interference from the presence of large amounts of ions. The method was successfully applied to the speciation of nitrite and nitrate in spiked natural water, wastewater and foodstuff samples. The precision and accuracy of the proposed method were comparable to those of the reference spectrophotometric method.  相似文献   
99.
In the present work, a slurry sampling flame atomic absorption spectrometric method to determine directly manganese and zinc in powdered chocolate samples is proposed. The optimization step was performed using univariate methodology involving the following factors: nature and concentration of the acid solution, sonication time, and particle size. The established conditions led to the use of a sample mass of 150 mg, 2.0 mol L− 1 nitric acid solution, sonication time of 15 min, and a slurry volume of 50 mL. This method allows the determination of manganese and zinc with detection limit of 52 and 61 ng g− 1, respectively, and a precision expressed as relative standard deviation (RSD) of 2.6% and 3.2% (both, n = 10) for contents of manganese and zinc of 52.4 and 100.0 μg g− 1, respectively. The proposed method was applied for determination of manganese and zinc in five powdered chocolate samples. In these, the manganese content varied from 42.8 to 52.7 and from 88.6 to 102.4 μg g− 1 of zinc. The analytical results were compared with the results obtained by analysis of these samples after digestion using open vessel and acid bomb digestion procedures and determination using FS-FAAS. The statistical comparison by t-test (95% confidence level) showed no significant difference between these results.  相似文献   
100.
The paper presents the principles and advantages of a technique combining high performance liquid chromatography and hydride generation atomic absorption spectrometry (HPLC-HGAAS) applied to speciation analysis of inorganic species of arsenic As(III) and As(V) in ground water samples. With separation of the arsenic species on an ion-exchange column in the chromatographic system and their detection by the hydride generation atomic absorption spectrometry, the separation of the analytical signals of the arsenic species was excellent at the limits of determination of 1.5 ng/ml As(III) and 2.2 ng/ml As(V) and RSD of 4.3% and 7.8% for the concentration of 25 ng/ml. The hyphenated technique has been applied for determination of arsenic in polluted ground water in the course of the study on migration of micropollutants. For total arsenic concentration two independent methods: HGICP-OES and HGAAS were used for comparison of results of real samples analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号