首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
化学   6篇
力学   19篇
数学   32篇
物理学   25篇
  2023年   2篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   1篇
  2011年   9篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   7篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有82条查询结果,搜索用时 46 毫秒
21.
3080E3全自动X荧光光谱仪控制电路故障的特征处理   总被引:1,自引:0,他引:1  
谷金平 《光谱实验室》1999,16(5):518-520
本文描述的是一次对进口大型精密仪器控制电路故障的特殊处理,希望对用户有所启示。  相似文献   
22.
Consider an initially straight rod of circular cross section bent into a circular ring so that the cross sections of the two ends meet face to face. In this paper we study, theoretically and experimentally, the behavior of the ring as the relative rotation between the two end cross sections increases quasi-statically. The variables of interest are the relative rotation angle and the corresponding twisting moment. In theoretical aspect the ring is modeled as an elastica and its deformation is calculated by shooting method. It is found that a ring with dimensionless rod radius 0.001 jumps to a two-point self-contact deformation when the relative rotation angle reaches a critical value. As the rotation angle continues to increase, the deformation evolves smoothly to three-point contact and finally to point-line-point contact. In the experiment we build a simple device to control the relative rotation angle between the two end cross sections. Measurements of twisting moment and relative rotation angle are recorded and compared with theoretical prediction. Reasonable agreement between experiment and theory is observed. Especially the jump phenomenon is confirmed. Installation misalignment and plastic deformation of the rod are the main causes of discrepancy between theory and experiment.  相似文献   
23.
The present paper is devoted to the study of finite inflation of a hyperelastic toroidal membrane on a cylindrical rim under uniform internal pressure. Both compliant and rigid frictionless rims have been considered. The compliant cylindrical rim is modeled as a linear distributed stiffness. The initial cross-section of the torus is assumed to be circular, and the membrane material is assumed to be a homogeneous and isotropic Mooney–Rivlin solid. The problem is formulated as a two point boundary value problem and solved using a shooting method by employing the Nelder–Meads search technique. The optimization function is constructed on a two (three) dimensional search space for the compliant cylinder (rigid cylinder). The effect of the inflation pressure, material properties and elastic properties of the rim on the state of stretch and stress, and on the geometry of the inflated torus have been studied, and some interesting results have been obtained. The stability of the inflated configurations in terms of occurrence of the impending wrinkling state in the membrane has also been studied.  相似文献   
24.
We consider in this paper the numerical solution of the Falkner-Skan differential equation, modelling under some similarity assumptions the boundary layer equation. We look for the extremal solution of this third order differential equation. The methods we use are basically the Newton method with a shooting process, which is coupled with a continuation method: they allow us to follow the solution arcs which contain regular and turning point solutions.  相似文献   
25.
In Evans function computations of the spectra of asymptotically constant-coefficient linear operators, a basic issue is the efficient and numerically stable computation of subspaces evolving according to the associated eigenvalue ODE. For small systems, a fast, shooting algorithm may be obtained by representing subspaces as single exterior products [J.C. Alexander, R. Sachs, Linear instability of solitary waves of a Boussinesq-type equation: A computer assisted computation, Nonlinear World 2 (4) (1995) 471–507; L.Q. Brin, Numerical testing of the stability of viscous shock waves, Ph.D. Thesis, Indiana University, Bloomington, 1998; L.Q. Brin, Numerical testing of the stability of viscous shock waves, Math. Comp. 70 (235) (2001) 1071–1088; L.Q. Brin, K. Zumbrun, Analytically varying eigenvectors and the stability of viscous shock waves, in: Seventh Workshop on Partial Differential Equations, Part I, 2001, Rio de Janeiro, Mat. Contemp. 22 (2002) 19–32; T.J. Bridges, G. Derks, G. Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: A numerical framework, Physica D 172 (1–4) (2002) 190–216]. For large systems, however, the dimension of the exterior-product space quickly becomes prohibitive, growing as , where n is the dimension of the system written as a first-order ODE and k (typically n/2) is the dimension of the subspace. We resolve this difficulty by the introduction of a simple polar coordinate algorithm representing “pure” (monomial) products as scalar multiples of orthonormal bases, for which the angular equation is a numerically optimized version of the continuous orthogonalization method of Drury–Davey [A. Davey, An automatic orthonormalization method for solving stiff boundary value problems, J. Comput. Phys. 51 (2) (1983) 343–356; L.O. Drury, Numerical solution of Orr-Sommerfeld-type equations, J. Comput. Phys. 37 (1) (1980) 133–139] and the radial equation is evaluable by quadrature. Notably, the polar-coordinate method preserves the important property of analyticity with respect to parameters.  相似文献   
26.
In this paper, we present an efficient numerical algorithm for solving two-point linear and nonlinear boundary value problems, which is based on the Adomian decomposition method (ADM), namely, the extended ADM (EADM). The proposed method is examined by comparing the results with other methods. Numerical results show that the proposed method is much more efficient and accurate than other methods with less computational work.  相似文献   
27.
The candid intension of this article is to inspect the heat and mass transfer of a magnetohydrodynamic tangent hyperbolic nanofluid. The nanofluid flow has been assumed to be directed by a wedge on its way. In addition, the collective stimulus of the convective heating mode with thermal radiation is inspected. The governing set of PDEs is rendered into that of the coupled nonlinear ODEs. The resulting ordinary differential equations are then solved by the well known shooting technique for two different cases; the flow over a static wedge and flow over a stretching wedge. The impact of intricate physical parameters on the velocity, temperature and concentration profiles is analyzed graphically. It is noticed that the intensifying values of the generalized Biot number, Brownian motion parameter, thermophoresis parameter and Weissenberg number enhances the dimensionless temperature profile.  相似文献   
28.
We study both existence and the exact number of positive solutions of the problem
  相似文献   
29.
We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal trajectories may involve singular arcs (along which the norm of the thrust is neither zero nor maximal), that are computed and characterized. Numerical simulations are carried out, both with direct and indirect methods, demonstrating the relevance of taking into account singular arcs in the control strategy. The indirect method that we use is based on our previous theoretical analysis and consists in combining a shooting method with an homotopic method. The homotopic approach leads to a quadratic regularization of the problem and is a way to tackle the problem of nonsmoothness of the optimal control. Support from the French Space Agency CNES (Centre National d’Etudes Spatial) is gratefully acknowledged.  相似文献   
30.
The flow of viscoelastic fluids through a porous channel with one impermeable wall is computed. The flow is characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. Three solutions are developed: (i) an exact numerical solution, (ii) a perturbation solution for small R, the cross-flow Reynold's number and (iii) an asymptotic solution for large R. The results from exact numerical integration reveal that the solutions for a non-Newtonian fluid are possible only up to a critical value of the viscoelastic fluid parameter, which decreases with an increase in R. It is further demonstrated that the perturbation solution gives acceptable results only if the viscoelastic fluid parameter is also small. Two more related problems are considered: fluid dynamics of a long porous slider, and injection of fluid through one side of a long vertical porous channel. For both the problems, exact numerical and other solutions are derived and appropriate conclusions drawn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号