首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   37篇
  国内免费   30篇
化学   77篇
晶体学   4篇
力学   18篇
综合类   10篇
数学   30篇
物理学   600篇
  2023年   4篇
  2022年   6篇
  2021年   15篇
  2020年   12篇
  2019年   16篇
  2018年   14篇
  2017年   9篇
  2016年   13篇
  2015年   19篇
  2014年   30篇
  2013年   31篇
  2012年   72篇
  2011年   68篇
  2010年   65篇
  2009年   58篇
  2008年   59篇
  2007年   21篇
  2006年   33篇
  2005年   24篇
  2004年   16篇
  2003年   10篇
  2002年   31篇
  2001年   8篇
  2000年   19篇
  1999年   11篇
  1998年   19篇
  1997年   10篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   5篇
  1986年   3篇
  1985年   2篇
  1969年   1篇
排序方式: 共有739条查询结果,搜索用时 31 毫秒
31.
We report here an experimental study of magnetization of FeNiW alloys at different compositions. We have studied variation of magnetization with temperature (at low external fields) and magnetic field (at low temperatures). The alloy shows para to ferromagnetic transitions across the composition range. We do not find any indication of the spin-glass phase. We have supplemented the experimental work with theoretical analysis using the first-principles tight-binding linear muffin-tin orbitals based augmented space recursion method. Our theoretical estimates of magnetic moment and Curie temperatures agree well with experiment. Our mean-field phase analysis also does not indicate the possibility of a spin-glass phase.  相似文献   
32.
33.
The hysteretic behavior of mechanically alloyed nanocomposites FeCo+MnO was studied at high temperatures. These composites present an unusual high and thermally stable coercivity, compared to FeCo milled at equal conditions. Coercivity enhancement was observed in hysteresis loops obtained between room temperature and 750 K. It is attributed to the isolation of the FeCo ferromagnetic particles by the paramagnetic MnO (TN=120 K). The Mrev(Mirr)H curves are clearly linear for the composite, indicating that coherent rotation is the reversal mechanism in these materials.  相似文献   
34.
Control on the size of copper oxide (CuO) in the nano range is a highly motivating approach to study its multifunctional nature. The present investigation reports a sol-gel derived Ni doped CuO nanoparticles (Cu1-xNixO). Rietveld refinement of the XRD spectra confirms the formation of single monoclinic phase of Cu1-xNixO nanoparticles having crystallite size within the range of 19–21 nm. Raman spectra show the presence of characteristics Raman active modes and vibrational bands in the Cu1-xNixO samples that corroborate the monoclinic phase of the samples as revealed by refinement of XRD data. The estimated band gap of pure CuO is found to be ∼1.43 eV, which decreases with the increase of dopant concentration into CuO matrix. This result is in line with estimated crystallite size. Magnetization curves confirm the weak ferromagnetic nature of Cu1-xNixO nanoparticles which reveal the DMS phase. This weak magnetic nature may be induced in the samples due to the exchange interaction between the localized magnetic d-spins of Ni ions and carriers (holes or electrons) from the valence band of pristine CuO lattice. Replacement of Cu+2 by Ni+2 ions into the host CuO lattice induces the magnetization. The quantified value of squareness ratio (S < 0.5) confirms the inter-grain magnetic interactions in the Cu1-xNixO nanoparticles which is also the reason of weak induced magnetization.  相似文献   
35.
With the quick development of sensor technology in recent years, online detection of early fault without system halt has received much attention in the field of bearing prognostics and health management. While lacking representative samples of the online data, one can try to adapt the previously-learned detection rule to the online detection task instead of training a new rule merely using online data. As one may come across a change of the data distribution between offline and online working conditions, it is challenging to utilize the data from different working conditions to improve detection accuracy and robustness. To solve this problem, a new online detection method of bearing early fault is proposed in this paper based on deep transfer learning. The proposed method contains an offline stage and an online stage. In the offline stage, a new state assessment method is proposed to determine the period of the normal state and the degradation state for whole-life degradation sequences. Moreover, a new deep dual temporal domain adaptation (DTDA) model is proposed. By adopting a dual adaptation strategy on the time convolutional network and domain adversarial neural network, the DTDA model can effectively extract domain-invariant temporal feature representation. In the online stage, each sequentially-arrived data batch is directly fed into the trained DTDA model to recognize whether an early fault occurs. Furthermore, a health indicator of target bearing is also built based on the DTDA features to intuitively evaluate the detection results. Experiments are conducted on the IEEE Prognostics and Health Management (PHM) Challenge 2012 bearing dataset. The results show that, compared with nine state-of-the-art fault detection and diagnosis methods, the proposed method can get an earlier detection location and lower false alarm rate.  相似文献   
36.
针对高光谱图像中背景及目标先验知识未知条件下的异常目标检测问题,提出了一种基于独立成分分析(ICA)的异常探测算法.首先估计原始数据的虚拟维(VD)以确定要分离的独立成分个数,在此基础上进行快速独立成分分析(FastICA),然后基于平均局部奇异度选择含异常信息较多的独立成分,最后使用丰度量化算法得到异常目标的丰度图像...  相似文献   
37.
傅正平  林峰  朱星 《物理学报》2011,60(11):114213-114213
利用RCWA(rigid coupled-wave analysis)方法研究了一维金属光栅的反射特性,考察了 瑞利反常、表面等离激元驻波共振和几何共振三种共振吸收机理,分析了这三种机理的相互作用,如表面等离激元驻波共振和几何共振可以形成混合模式. 在反射式复合金属光栅中,确认了第四种共振形式,即相位共振. 数值计算表明相位共振对光学吸收的影响有两种形式: 当光栅周期大于一个波长时,相位共振导致尖锐的吸收峰,峰位在几何共振吸收峰一侧;当光栅周期小于一个波长时,相位共振导致混合模式的共振吸收峰发生劈裂. 对一维金属光栅反射特性的研究增加了对金属光栅共振吸收模式及其相互作用的认识. 关键词: 一维金属光栅 瑞利反常 表面等离激元 相位共振  相似文献   
38.
The effect of magnetic field h on the magnetic properties of the one-dimensional spin-1 ferromagnetic Heisenberg model is studied by the double-time Green’s function method. The magnetization and susceptibility are obtained within the Callen approximation. The zero-field susceptibility is as a decreasing function of the temperature T. The magnetization m increases in the whole field region, but the susceptibility maximum χ(Tm) decreases. The position Tm of the susceptibility maximum is both solved analytically and fits well to be a power law Tmhγ at low fields and to be linear increasing at high fields. The height χ(Tm) decreases as a power law χ(Tm)∼hβ with h increasing. The exponents (γ,β) obtained in our results agree with the other theoretical results. Our results are roughly in agreement with the results obtained in the experiment of Ni(OH)(NO3)H2O.  相似文献   
39.
We have studied the effect of thermal treatment on the magnetic domain structure and magnetic reversal process of amorphous and nanocrystalline Fe40Co38Mo4B18 microwires. The domain structure and the magnetization reversal of amorphous FeCoMoB microwires reflect the complex stress distribution introduced by the glass coating. Hence, the thickness of radial domain structure decreases with temperature and the temperature dependence of the switching field presents a discontinuous behavior. After nanocrystallization, the domain structure of FeCoMoB microwire is almost constant within the temperature range 10-400 K and the switching field decreases almost linearly with temperature mostly because of the decrease of saturation magnetization.  相似文献   
40.
A new ferromagnetic hysteresis model for soft magnetic composite materials based on their specific properties is presented. The model relies on definition of new anhysteretic magnetization based on the Cauchy-Lorentz distribution describing the maximum energy state of magnetic moments in material. Specific properties of soft magnetic composite materials (SMC) such as the presence of the bonding material, different sizes and shapes of the Fe particles, level of homogeneity of the Fe particles at the end of the SMC product treatment, and achieved overall material density during compression, are incorporated in both the anhysteretic differential magnetization susceptibility and the irreversible differential magnetization susceptibility. Together they form the total differential magnetization susceptibility that defines the new ferromagnetic hysteresis model. Genetic algorithms are used to determine the optimal values of the proposed model parameters. The simulated results show good agreement with the measured results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号