首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7029篇
  免费   327篇
  国内免费   391篇
化学   2979篇
晶体学   55篇
力学   165篇
综合类   8篇
数学   116篇
物理学   4424篇
  2023年   45篇
  2022年   75篇
  2021年   92篇
  2020年   145篇
  2019年   125篇
  2018年   151篇
  2017年   116篇
  2016年   231篇
  2015年   203篇
  2014年   255篇
  2013年   339篇
  2012年   796篇
  2011年   776篇
  2010年   573篇
  2009年   644篇
  2008年   481篇
  2007年   548篇
  2006年   342篇
  2005年   259篇
  2004年   237篇
  2003年   180篇
  2002年   201篇
  2001年   119篇
  2000年   114篇
  1999年   116篇
  1998年   146篇
  1997年   50篇
  1996年   47篇
  1995年   50篇
  1994年   30篇
  1993年   36篇
  1992年   21篇
  1991年   20篇
  1990年   33篇
  1989年   17篇
  1988年   17篇
  1987年   10篇
  1986年   17篇
  1985年   14篇
  1984年   9篇
  1982年   11篇
  1981年   11篇
  1980年   7篇
  1979年   11篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
排序方式: 共有7747条查询结果,搜索用时 15 毫秒
81.
The thermal conductivity of a number of ferrofluids consisting of colloidally dispersed Fe3O4 particles in diester, hydrocarbon, water and fluorcarbon carriers have been measured at 38°C. The variation in thermal conductivity with particle concentration is well described by Tareef's equation (1940). This has enabled the ratio of the physical to magnetic size to be determined and compared with estimates of the ratio obtained from electron micrographs and magnetic measurements.The fit between theory and experiment is particularly good for hydrocarbon carrier fluids giving the ratio of solid to magnetic radiusR i/R m=1.24±0.03 compared with the value obtained from magnetic data and electron micrographs of 1.19±0.07. The corresponding value from the fluids with a diester carrier ranges between 1.1<R d/R m<1.3 which is again consistent with microscopy and magnetic data.The application of a magnetic field of 0.1 T had no noticeable effect on the thermal conductivities of ferrofluids.  相似文献   
82.
Modern drug development requires technologies that allow rapid translation from the preclinical to the clinical stage. It is obvious that non-invasive imaging modalities such as magnetic resonance imaging (MRI) will play a central role in this regard. This article reviews the use of structural and functional MRI readouts for characterization of central nervous system (CNS) disorders and evaluation of the efficacy of potential CNS drugs. Examples comprise dementia of Alzheimer's type, cerebral ischemia, and neuroinflammation covering both clinical and preclinical aspects. In these examples MRI has been used to obtain relevant structural information on brain atrophy, on the location and extent of ischemic brain areas, and on the number and distribution of demyelinated plaques. These structural data are complemented by readouts assessing the functional consequences associated with the pathomorphological changes. In the last decade, MRI has evolved into a standard tool for the development of CNS drugs. With regard to target-specific/molecular imaging applications MRI is limited by its inherently low sensitivity; complementary imaging modalities utilizing optical and radionuclear reporter systems will thus be required.  相似文献   
83.
A versatile process for the preparation of composite films consisting of magnetite (Fe3O4) nanoparticles embedded in a polyaniline (PANI) matrix is reported. Spectroscopic properties of polyaniline matrix (PANI-EB), polyaniline protonated with camphor sulfonic acid (PANI-CSA0.5) PANI-ES and PANI/Fe3O4-CSA0.5 composites were studied, both in the state of the solutions of m-cresol and in thin films processed from the same solvents. The results of these studies indicate that m-cresol can be used for PANI/Fe3O4 composite preparation. Such films show both reasonably high electrical conductivity and magnetic permeability. A controlled application of a magnetic field during the casting process resulted in the formation of the materials with an unusual combination of magnetic and transport properties. The obtained films show the behavior that can be explained by the presence of both ferromagnetic and paramagnetic phases. The superparamagnetic contribution, if any, is very small. Application of the external magnetic field during fabrication of the composites stimulates creation of the aggregates of magnetic particles which, although keeps conductivity at a relatively high level, leads to a small decrease of the conductivity value.  相似文献   
84.
Summary. The magnetic and microstructure properties of Fe2O3–0.4NiO–0.6ZnO–B2O3 glass system, which was subjected to heat treatment in order to induce a magnetic crystalline phase (Ni0.4Zn0.6-Fe2O4 crystals) within the glass matrix, were investigated. DSC measurement was performed to reveal the crystallization temperature of the prepared glass sample. The obtained samples, produced by heat treatment at 765°C for various times (1, 1.5, 2, and 3 h), were characterized by X-ray diffraction, IR spectra, transmission electron microscopy, and vibrating sample magnetometer. The results indicated the formation of spinel Ni–Zn ferrite in the glass matrix. Particles of the ferrite with sizes ranging from 28 to 120 nm depending on the sintering time were observed. The coercivity values for different heat-treatment samples were found to be in the range from 15.2 to 100 Oe. The combination of zinc content and sintering times leads to samples with saturation magnetization ranging from 12.25 to 17.82 emu/g.  相似文献   
85.
Two new tetranuclear complexes of macrocyclic oxamide [Cd(CuL)3](NO3)2·2.5H2O 1, [Mn(CuL)3(OH)2](ClO4)2·Mn(H2O)6·4.5H2O 2 (L = 1,4,8,11-tatraazacyclotradecanne-2,3-dione) have been synthesized, structurally characterized and preliminary investigated by magnetic studies. The structures of the title complexes consist of a tetranuclear units MCu3 (M = Cd, Mn), the packing diagram shows two-dimensional and three-dimensional system through intermolecular weak interactions. The temperature-dependent magnetic susceptibilities of complex 2 were analyzed by an approximate treatment leading to J = −33 cm−1, gCu = 2.10, gMn = 1.95 indicating antiferromagnetic exchange between Cu(II) and Mn(II) ions.  相似文献   
86.
Single crystals of CeAgAs2 have been obtained by chemical transport reactions starting from a pre‐reacted powder sample. The crystal structure was solved using X‐ray diffraction (space group Pmca, No. 57, a = 5.7586(4) Å, b = 5.7852(4) Å, c = 21.066(3) Å, Z = 8) and refined to a residual of R(F) = 0.029 for 46 refined parameters and 1020 reflections. The structure of CeAgAs2 represents a new distorted and ordered variant of the HfCuSi2 type. The characteristic feature of this structure are infinite cis‐trans chains of As atoms with As—As distances of 2.563(1) Å and 2.601(1) Å. CeAgAs2 is paramagnetic (μeff = 2.37 μB, θ = —10.5(2) K), with antiferromagnetic ordering at 5.5(2) K and exhibits a metamagnetic transition starting at 4.6 kOe and T = 1.8 K.  相似文献   
87.
The preparation of the rare earth containing oxide fluoride glasses LnF3 (Ln; Y through Lu)-BaF2-AlF3-GeO2 in which the nominal content of LnF3 reached 60 mol% in maximum and their basic properties such as density, refractive index and glass transition temperature were investigated and summarized in detail. Especially, in order to discuss the local structure around the rare earth ion in the glass, the Judd-Ofelt analysis (discussion with Ω parameters) of the HoF3-BaF2-AlF3-GeO2 glasses was carried out. The unique fluorescent behavior and the magnetic properties of LnF3-BaF2-AlF3-GeO2 glasses (Ln = Tb and/or Sm) were also studied.  相似文献   
88.
The aggregation properties of ammonium perfluorooctanoate (NH4-PFO) in concentrated aqueous phases have been investigated by magnetic resonance techniques and have been compared with the aggregation properties in dilute solutions. Magnetic resonance methods indicated that NH4-PFO—water systems with surfactant concentrations below 45% (w/w) behaved as isotropic purely micellar solutions in the temperature range 285–340 K. For higher concentrations the system exhibited a rather complex structure, having both isotropic and anisotropic components. The nematic nature of the anisotropic fraction was demonstrated by 19F NMR studies. The 19F NMR and EPR of nitroxides (TempTMA+, 5- and 16-DXSA) inserted as paramagnetic probes into the concentrated NH4-PFO—water systems allowed us to establish that the lamellar phase could be mechanically oriented between quartz slides. The EPR investigation also gave details concerning the dynamics of both the oriented and non-oriented structures.  相似文献   
89.
A novel conjugation-elongated bis(ethylenedithio)tetraselenafulvalene (BETS) type donor, 2,5-bis(4,5-ethylenedithio-1,3-diselenol-2-ylidene)-2,3,4,5-tetrahydrothiophene (BEDT-HBDST) and its magnetic and non-magnetic anion salts, (BEDT-HBDST)2MX4 (MX4=FeCl4, GaCl4, FeBr4 and GaBr4), were prepared. These four salts are isostructural and belong to the space group of P2/c. They showed semiconducting behavior with small activation energies (59-64 meV). The band structures of these salts are quasi one-dimensional and there is a midgap between the upper band and the lower band, since the degree of dimerization is significant in the stacking direction. The MX4 ions are located between the donor columns and near to the ethylenedithio moieties of the donor molecules. The magnetic susceptibilities of the FeCl4 and FeBr4 salts follow the Curie-Weiss law with Curie constants of 4.6 and 4.8 emu K mol−1 (sum of the spins of S=5/2 and S=1/2) and negative Weiss temperatures of θ=−1.2 and −4.9 K, respectively, revealing a weak antiferromagnetic interaction of 3d spins of the FeCl4 and FeBr4 anions. The Fe?Fe (6.66-7.60 Å), Cl?Cl (4.81-4.82 Å) and Br?Br (4.74-4.77 Å) distances in the crystal structures of these salts are significantly long. Therefore, the direct magnetic interaction between the 3d spins of the nearest neighboring Fe3+ ions appears to be not readily accessible.  相似文献   
90.
When two paramagnetic transition metal ions are present in the same molecular entity, the magnetic properties can be totally different from the sum of the magnetic properties of each ion surrounded by its nearest neighbors. These new properties depend on the nature and the magnitude of the interaction between the metal ions through the bridging ligands. If both ions have an unpaired electron (e.g. Cu2+ ions), then the molecular state of lowest energy is either a spin singlet or a spin triplet. In the former case, the interaction is said to be antiferromagnetic, in the latter case ferromagnetic. The nature and the order of magnitude of the interaction can be engineered by judiciously choosing the interacting metal ions and the bridging and terminal ligands, and, thus, by the symmetry and the delocalization of the orbitals centered on the metal ions and occupied by the unpaired electrons (magnetic orbitals). The first success in this “molecular engineering” of bimetallic compounds was in the synthesis of a Cu2+VO2+ heterobimetallic complex in which the interaction is purely ferro-magnetic. The same strategy could be utilized for designing molecular ferromagnets, one of the major challenges in the area of molecular materials. Another striking result is the possibility of tuning the magnitude of the interaction through a given bridging network by modifying the nature of the terminal ligands, which, in some way, play the role of “adjusting screws”. By careful selection of the bridging and terminal ligands, a very large antiferro-magnetic interaction can be achieved, even if the metal ions are far away from each other. Some sulfur-containing bridges are especially suitable in this respect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号