首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1004篇
  免费   46篇
  国内免费   27篇
化学   240篇
晶体学   3篇
力学   8篇
综合类   4篇
数学   11篇
物理学   811篇
  2024年   2篇
  2023年   10篇
  2022年   24篇
  2021年   25篇
  2020年   32篇
  2019年   25篇
  2018年   25篇
  2017年   24篇
  2016年   26篇
  2015年   25篇
  2014年   81篇
  2013年   102篇
  2012年   84篇
  2011年   56篇
  2010年   76篇
  2009年   80篇
  2008年   77篇
  2007年   66篇
  2006年   23篇
  2005年   31篇
  2004年   17篇
  2003年   28篇
  2002年   11篇
  2001年   8篇
  2000年   10篇
  1999年   17篇
  1998年   12篇
  1997年   12篇
  1996年   9篇
  1995年   16篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   1篇
  1987年   6篇
  1985年   4篇
  1984年   1篇
排序方式: 共有1077条查询结果,搜索用时 31 毫秒
941.
Sputter depth profiling using Auger electron spectroscopy (AES) is influenced by the electron backscattering contribution to the AES intensity. When approaching an interface between two components having a different backscattering factor, the shape of the profile is characteristically distorted. This distortion is taken into account in a modified version of the mixing‐roughness‐information depth (MRI) model. The modification is based on the simplified assumption that the influence of the backscattering effect of the component below the interface increases exponentially with decreasing distance of the actual surface to the interface. Application of the modified MRI model is shown to yield excellent results of profile calculation for AES depth profiling of Si/W, C/Ta, C/Ti, and Au/TiO2 interfaces, with backscattering factor ratios close to those predicted by the Ichimura–Shimizu relation. A simple correction of the backscattering influence is proposed and discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
942.
943.
通过二乙三胺五乙酸二酐(DTPAA)分别与N-正丁基、正辛基、苄基、对甲苯磺酰基、苯基和对溴苯基取代二乙醇胺共聚,制得一系列大分子配体及其钆(III)配合物.对所合成的配体和钆配合物进行了表征,并测试了部分钆配合物的核磁弛豫性能.  相似文献   
944.
Polyazapolycarboxylic acids are known to be efficient ligands for the development of gadolinium-based contrast agents used in magnetic resonance imaging (MRI). Given that rigidification of the ligand structure seems to be an important structural parameter to increase the relaxivity of the corresponding gadolinium complex, we have synthesized a new tricyclic tetraazatriacetate ligand from commercially available trans-2-aminocyclohexanol. In the synthetic routes described here, the 2-nitrobenzenesulfonamide chemistry was used to selectively functionalize the polyamine precursors.  相似文献   
945.
946.
A monophosphonate analogue of H4dota, 1,4,7,10-tetraazacyclododecane-4,7,10-tris(carboxymethyl)-1-methylphosphonic acid (H5do3aP), and its complexes with lanthanides were synthesized. Multinuclear NMR studies reveal that, in aqueous solution, lanthanide(III) complexes of the ligand exhibit structures analogous to those of H4dota complexes. Thus, the central ion is nine-coordinate, surrounded by four nitrogen atoms, three acetate and one phosphonate oxygen atoms, and one water molecule in an apical position. For complexes of H5do3aP with Ln(III) ions in the middle of the series, the abundance of the desired twisted square-antiprismatic (TSAP) isomer is higher than for the corresponding H4dota complexes. The TSAP/square-antiprismatic (SAP) isomer ratio is highly sensitive to protonation of the phosphonate group: a higher abundance of the TSAP isomer was found in acidic solutions. The microscopic protonation constants of the TSAP isomers are higher than those of the SAP isomers. The presence of one water molecule in the first coordination sphere of the complexes in the pH region studied (pH 2.5-7.0) is confirmed by 17O NMR spectroscopy. The results of a simultaneous fit of variable-temperature 17O NMR relaxation data and 1H NMRD profiles show that the residence time of water (tauM) in the Gd(III) complex is much smaller than for [Gd(dota)(H2O)]-. The exchange rate appears to be dependent on the pH of the solution. The values of tauM are 37, 40, and 14 ns at pH 2.5, 4.7, and 7.0, respectively. These observations can be explained by an extensive second-sphere hydrogen-bonding network that varies with the state of protonation of the phosphonate moiety. Upon protonation of the complex, the second-sphere hydration probably becomes more ordered, which may result in a decrease in penetrability and an increase in tauM. The relaxivity of the Gd(III) complex is almost independent of the pH and is equal to 4.7 s(-1) mM(-1) (20 MHz, pH 7 and 37 degrees C). The solid-state structure was determined for the Nd(III) complex. It crystallizes as the TSAP isomer and the unit cell contains two independent molecules of the complex with different Nd-O(water) bond lengths of 2.499 and 2.591 A.  相似文献   
947.
Eu(II) complexes are potential candidates for pO(2)-responsive contrast agents in magnetic resonance imaging. In this regard, we have characterized two novel macrocyclic Eu(II) chelates, [Eu(II)(DOTA)(H(2)O)](2-) and [Eu(II)(TETA)](2-) (H(4)DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, H(4)TETA=1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid) in terms of redox and thermodynamic complex stability, proton relaxivity, water exchange, rotation and electron spin relaxation. Additionally, solid-state structures were determined for the Sr(II) analogues. They revealed no inner-sphere water in the TETA and one inner-sphere water molecule in the DOTA complex. This hydration pattern is retained in solution, as the (17)O chemical shifts and (1)H relaxation rates proved for the corresponding Eu(II) compounds. The thermodynamic complex stability, determined from the formal redox potential and by pH potentiometry, of [Eu(II)(DOTA)(H(2)O)](2-) (lg K(Eu(II))=16.75) is the highest among all known Eu(II) complexes, whereas the redox stabilities of both [Eu(II)(DOTA)(H(2)O)](2-) and [Eu(II)(TETA)](2-) are inferior to that of 18-membered macrocyclic Eu(II) chelates. Variable-temperature (17)O NMR, NMRD and EPR studies yielded the rates of water exchange, rotation and electron spin relaxation. Water exchange on [Eu(II)(DOTA)(H(2)O)](2-) is remarkably fast (k298(ex)=2.5 x 10(9) s(-1)). The near zero activation volume (DeltaV++ =+0.1+/-1.0 cm(3) mol(-1)), determined by variable-pressure (17)O NMR spectroscopy, points to an interchange mechanism. The fast water exchange can be related to the low charge density on Eu(II), to an unexpectedly long M-O(water) distance (2.85 A) and to the consequent interchange mechanism. Electron spin relaxation is considerably slower on [Eu(II)(DOTA)(H(2)O)](2-) than on the linear [Eu(II)(DTPA)(H(2)O)](3-) (H(5)DTPA=diethylenetriaminepentaacetic acid), and this difference is responsible for its 25 percent higher proton relaxivity (r(1)=4.32 mM(-1) s(-1) for [Eu(II)(DOTA)(H(2)O)](2-) versus 3.49 mM(-1) s(-1) for [Eu(II)(DTPA)(H(2)O)](3-); 20 MHz, 298 K).  相似文献   
948.
We report the study of binuclear Ln(III) chelates of OHEC (OHEC=octaazacyclohexacosane-1,4,7,10,14,17,20,23-octaacetate). The interconversion between two isomeric forms, which occurs in aqueous solution, has been studied by NMR, UV/Vis, EPR, and luminescence spectroscopy, as well as by classical molecular dynamics (MD) simulations. For the first time we have characterized an isomerization equilibrium for a Ln(III) polyaminocarboxylate complex (Ln(III)=Y, Eu, Gd and Tb) in which the metal centre changes its coordination number from nine to eight, such that: [Ln(2)(ohec)(H(2)O)(2)](2-) r<==>[Ln(2)(ohec)](2-)+2 H(2)O. The variable temperature and pressure NMR measurements conducted on this isomerization reaction give the following thermodynamic parameters for Eu(III): K(298)=0.42+/-0.01, DeltaH(0)=+4.0+/-0.2 kJ mol(-1), DeltaS(0)=+6.1+/-0.5 J K(-1) mol(-1) and DeltaV(0)=+3.2+/-0.2 cm(3) mol(-1). The isomerization is slow and the corresponding kinetic parameters obtained by NMR spectroscopy are: k(298)(is)=73.0+/-0.5 s(-1), DeltaH++(is)=75.3+/-1.9 kJ mol(-1), DeltaS++(is)= +43.1+/-5.8 J K(-1) mol(-1) and DeltaV++(is)=+7.9+/-0.7 cm(3) mol(-1). Variable temperature and pressure (17)O NMR studies have shown that water exchange in [Gd(2)(ohec)(H(2)O)(2)](2-) is slow, k(298)(ex)=(0.40+/-0.02)x10(6) s(-1), and that it proceeds through a dissociative interchange I(d) mechanism, DeltaV( not equal )=+7.3+/-0.3 cm(3) mol(-1). The anisotropy of this oblong binuclear complex has been highlighted by MD simulation calculations of different rotational correlation times. The rotational correlation time directed on the Gd-Gd axis is 24 % longer than those based on the axes orthogonal to the Gd-Gd axis. The relaxivity of this binuclear complex has been found to be low, since 1) only [Gd(2)(ohec)(H(2)O)(2)](2-), which constitutes 70 % of the binuclear complex, contributes to the inner-sphere relaxivity and 2) the anisotropy of the complex prevents water molecules from having complete access to both Gd(III) cages; this decreases the outer-sphere relaxivity. Moreover, EPR measurements for the Gd(III) and for the mixed Gd(III)/Y(III) binuclear complexes have clearly shown that the two Gd(III) centres interact intramolecularly; this enhances the electronic relaxation of the Gd(III) electron spins.  相似文献   
949.
Paramagnetic surface active ionic liquids (PMSAILs) classify task-specific ionic liquids with magnetic properties by incorporating metal into the cationic or anionic part of the ionic liquid. Paramagnetic ionic liquids had long-chain either in cations or anions and showed excellent surface activity and magnetic properties without any need for the magnetic nanoparticles. These PMSAILs have inherent unique ionic liquid properties and self-assembled into various nano-aggregates such as micelles, vesicles, rod-like micelles, and etc., by modification in the structure of cations or anions. PMSAILs provide stimuli-responsive properties, which is one of the essential aspects of targeted applications. The appropriate functional tunability of anions and cations in PMSAILs leads to various multifaceted chemical and biological applications. A new emerging trend in PMSAIL research is hybridization with flexible materials. This review will mainly deal with the synthesis, characterization, and brief history of PMSAILs and their potential advantages in the various applications in micellar catalysis, purification and separation of biomolecules, compaction and decompaction of DNA, drug delivery, and other biomedical applications.  相似文献   
950.
Antalek and Windig recently presented a fast method to resolve a series of NMR mixture spectra, where the contribution of the components varies with a decaying exponential [B. Antalek and W. Windig,J. Am. Chem. Soc.118, 10,331–10,332 (1996); W. Windig and B. Antalek,Chemom. Intell. Lab. Syst.37, 241–254 (1997)]. The method was called DECRA (direct exponential curve resolution algorithm). In this paper DECRA will be applied to two series of magnetic resonance images. The signal of one series is based uponT2relaxation, and the other is based uponT1relaxation. In order to evaluate the technique, the magnetic resonance images of a phantom where used. A transformation is introduced to enable the application of DECRA to aT1series of magnetic resonance images. A separate paper in this issue will describe the application of the techniques to magnetic resonance images of the human brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号