首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1345篇
  免费   126篇
  国内免费   48篇
化学   1058篇
晶体学   1篇
力学   58篇
综合类   26篇
数学   24篇
物理学   352篇
  2024年   4篇
  2023年   44篇
  2022年   47篇
  2021年   70篇
  2020年   50篇
  2019年   59篇
  2018年   38篇
  2017年   71篇
  2016年   71篇
  2015年   50篇
  2014年   55篇
  2013年   98篇
  2012年   87篇
  2011年   81篇
  2010年   68篇
  2009年   75篇
  2008年   85篇
  2007年   73篇
  2006年   52篇
  2005年   43篇
  2004年   50篇
  2003年   37篇
  2002年   17篇
  2001年   26篇
  2000年   32篇
  1999年   12篇
  1998年   15篇
  1997年   12篇
  1996年   8篇
  1995年   12篇
  1994年   18篇
  1993年   7篇
  1992年   12篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1971年   2篇
排序方式: 共有1519条查询结果,搜索用时 156 毫秒
981.
Proteomic analysis of cancer tissues and cells provides valuable information to identify promising targets for cancer diagnosis, prognosis and therapy. Novel strategies have emerged to optimize the workflow of tissue procurement, and tissue and cell selection, and to improve protocols for the extraction of protein from fresh, frozen and paraffin-embedded tissue. Moreover, in the context of advanced approaches to proteomics, mass spectrometry and array-based technologies strongly contribute to protein profiling of cancer tissues and cells.The focus of this review is the methods by which all the steps of a proteomic investigation on human-cancer tissue (from choice of the experimental model to validation of candidate biomarkers) should be performed, paying particular attention to recently developed strategies. The review also presents an overview of the most recent high-throughput proteomic studies in cancer research.  相似文献   
982.
The work presented in this report describes and demonstrates a protocol for protein imaging analysis of biological tissue using MALDI IMS where histological staining and MS analysis are performed on the same tissue section. Spatial image resolution is shown at 35 μm for sagittal sections of the cerebellum from rat brain.  相似文献   
983.
Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments. To create hydrogels with an anisotropic distribution, gradient hydrogels have been widely developed by adopting several gradient generation techniques. Herein, the various gradient hydrogel fabrication techniques, including dual syringe pump systems, microfluidic device, photolithography, diffusion, and bio‐printing are summarized. As the effects of gradient 3D hydrogels with stems have been reviewed elsewhere, this review focuses principally on gradient hydrogel fabrication for multi‐model tissue regeneration. This review provides new insights into the key points for fabrication of gradient hydrogels for multi‐model tissue regeneration.  相似文献   
984.
A rapid and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was established and validated for simultaneous determination of thirteen bioactive components (gallic acid, protocatechuic acid, puerarin, p‐hydroxycinnamic acid, daidzin, ononin, daidzein, naringenin, genistein, apigenin, formononetin, biochanin A, and β‐sitosterol) of Radix Puerariae extract in rat plasma and tissues. The plasma and tissues samples were pretreated by protein precipitation extraction, and umbelliferone and rutin were used as internal standards. Sample separation was performed on a ZORBAX RRHD Eclipse plus C18 column (2.1 mm × 50 mm, 1.8 µm, Agilent) with a mobile phase consisting of methanol–water (containing 0.1% formic acid). The mass spectrometry analysis was conducted in positive and negative ionization modes with multiple reaction monitoring. The lower limit of quantitation range for the 13 analytes was 0.2?35 ng/mL. The intra‐ and inter‐day precision of all the analytes were less than 10.92%, with an accuracy ranging from ?13.10 to 11.96%. Both the recovery and matrix effect were within acceptable limits. This method was successfully applied to pharmacokinetic and tissue distribution study of the 13 bioactive components in rats after oral administration of R. Puerariae extract.  相似文献   
985.
Severe peripheral nervous system injuries currently hold limited therapeutic solutions. Existing clinical techniques such as autografts, allografts, and newer nerve guidance conduits have shown variable outcomes in functional recovery, adverse immune responses, and in some cases low or minimal availability. This can be attributed in part to the lack of chemical, physical, and electrical cues directing both nerve guidance and regeneration. To address this pressing clinical issue, electrospun nanofibers and microfibers composed of piezoelectric polyvinylidene flouride‐triflouroethylene (PVDF‐TrFE) have been introduced as an alternative template for tissue engineered biomaterials, specifically as it pertains to their relevance in soft tissue and nerve repair. Here, biocompatible scaffolds of PVDF‐TrFE are fabricated and their ability to generate an electrical response to mechanical deformations and produce a suitable regenerative microenvironment is examined. It is determined that 20% (w/v) PVDF‐TrFE in (6:4) dimethyl formamide (DMF):acetone solvent maintains a desirable piezoelectric coefficient and the proper physical and electrical characteristics for tissue regeneration. Further, it is concluded that scaffolds of varying thickness promoted the adhesion and alignment of Schwann cells and fibroblasts. This work offers a prelude to further advancements in nanofibrous technology and a promising outlook for alternative, autologous remedies to peripheral nerve damage.  相似文献   
986.
987.
Fibrous scaffolds, which can mimic the elastic and anisotropic mechanical properties of native tissues, hold great promise in recapitulating the native tissue microenvironment. We previously fabricated electrospun fibrous scaffolds made of hybrid synthetic elastomers (poly(1,3‐diamino‐2‐hydroxypropane‐co‐glycerol sebacate)‐co‐poly (ethylene glycol) (APS‐co‐PEG) and polycaprolactone (PCL)) to obtain uniaxial mechanical properties similar to those of human aortic valve leaflets. However, conventional electrospinning process often yields scaffolds with random alignment, which fails to recreate the anisotropic nature of most of the soft tissues such as native heart valves. Inspired by the structure of native valve leaflet, we designed a novel valve leaflet‐inspired ring‐shaped collector to modulate the electrospun fiber alignment and studied the effect of polymer formulation (PEG amount [mole %] in APS‐co‐PEG; ratio between APS‐co‐PEG and PCL; and total polymer concentration) in tuning the biaxial mechanical properties of the fibrous scaffolds. The fibrous scaffolds collected on the ring‐shaped collector displayed anisotropic biaxial mechanical properties, suggesting that their biaxial mechanical properties are closely associated with the fiber alignment in the scaffold. Additionally, the scaffold stiffness was easily tuned by changing the composition and concentration of the polymer blend. Human valvular interstitial cells (hVICs) cultured on these anisotropic scaffolds displayed aligned morphology as instructed by the fiber alignment. Overall, we generated a library of biologically relevant fibrous scaffolds with tunable mechanical properties, which will guide the cellular alignment.  相似文献   
988.
各向异性水凝胶在外界的响应刺激下可以具有不同的反应机制与驱动过程. 本文综述了近期基于PNIPAM水凝胶智能响应驱动器的设计方法, 总结了多种各向异性结构对驱动性能的影响, 并对该领域所面临的挑战进行了讨论.  相似文献   
989.
Porous chitosan scaffolds with possible tissue engineering applications were synthesized by using lyophilization and supercritical carbon dioxide (sc.CO2) drying technique. 1% Chitosan (CS) solution in aq. acetic acid was treated with 37% formaldehyde solution; the resulting hydrogels were subjected to solvent-exchange prior to the final treatment procedures. Their morphology, pore structure, and physical properties were characterized by Fourier transform infrared spectroscopy (FTIR), thermal analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and the specific surface areas and porosities of scaffolds were determined by using N2 adsorption. The sc.CO2 treated scaffolds showed a much greater surface area in comparison to the lyophilized one. Hence, sc.CO2 treated scaffolds is better for cell proliferation. We further investigated the bioactivity of sc.CO2 treated scaffolds using simulated body fluid (SBF). The sc.CO2 assisted chitosan scaffold prepared by using green chemistry approach is highly pure and from a hygienic point of view, it is an ideal material for tissue engineering applications.  相似文献   
990.
The field of tissue engineering has made steady progress in translating various tissue applications. Although the classical tissue engineering strategy, which involves the use of culture-expanded cells and scaffolds to produce a tissue construct for implantation, has been validated, this approach involves extensive cell expansion steps, requiring a lot of time and laborious effort before implantation. To bypass this ex vivo process, a new approach has been introduced. In situ tissue regeneration utilizes the body''s own regenerating capacity by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the site of injury. This approach relies on development of a target-specific biomaterial scaffolding system that can effectively control the host microenvironment and mobilize host stem/progenitor cells to target tissues. An appropriate microenvironment provided by implanted scaffolds would facilitate recruitment of host cells that can be guided to regenerating structural and functional tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号