首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1345篇
  免费   126篇
  国内免费   48篇
化学   1058篇
晶体学   1篇
力学   58篇
综合类   26篇
数学   24篇
物理学   352篇
  2024年   4篇
  2023年   44篇
  2022年   47篇
  2021年   70篇
  2020年   50篇
  2019年   59篇
  2018年   38篇
  2017年   71篇
  2016年   71篇
  2015年   50篇
  2014年   55篇
  2013年   98篇
  2012年   87篇
  2011年   81篇
  2010年   68篇
  2009年   75篇
  2008年   85篇
  2007年   73篇
  2006年   52篇
  2005年   43篇
  2004年   50篇
  2003年   37篇
  2002年   17篇
  2001年   26篇
  2000年   32篇
  1999年   12篇
  1998年   15篇
  1997年   12篇
  1996年   8篇
  1995年   12篇
  1994年   18篇
  1993年   7篇
  1992年   12篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1971年   2篇
排序方式: 共有1519条查询结果,搜索用时 31 毫秒
961.
Composite nanofibers of poly(caprolactone) (PCL) and gelatin crosslinked with genipin are prepared. The contact angles and mechanical properties of crosslinked PCL‐gelatin nanofibers decrease as the gelatin content increases. The proliferation of myoblasts is higher in the crosslinked PCL‐gelatin nanofibers than in the PCL nanofibers, and the formation of myotubes is only observed on the crosslinked PCL‐gelatin nanofibers. The expression level of myogenin, myosin heavy chain, and troponin T genes is increased as the gelatin content is increased. The results suggest that PCL‐gelatin nanofibers crosslinked with genipin can be used as a substrate to modulate proliferation and differentiation of myoblasts, presenting potential applications in muscle tissue engineering.

  相似文献   

962.
For the reconstruction of functional tissue, biodegradable scaffolds providing specific surface functionality and a three‐dimensional structure matching that of the damaged tissue are needed. Fibers capable of controlling cell‐fiber interaction were produced by electrospinning of PDLLA‐block‐PEG with thiol‐reactive end groups from a solvent mixture. The hydrophilic fibers uniquely combine minimized non‐specific protein adsorption and well‐defined surface reactivity allowing controlled immobilization of peptides and proteins. Human dermal fibroblasts show adherence and proliferation on the surface of RGDC‐functionalized electrospun PDLLA‐block‐PEG fibers.

  相似文献   

963.
There is a growing interest in evaluating molecular markers as predictors of response to new generation of targeted cancer therapies. One of such areas is biological therapy targeting epidermal growth factor receptor gene (EGFR) in lung cancer. The testing of tumor tissue is focused on specific EGFR mutations and EGFR gene amplification, since tumors exhibiting positivity of either of the two marker types are highly sensitive towards the treatment. Although traditional methods of DNA sequencing and fluorescence in situ hybridization are still in use for the detection of EGFR mutations and gene amplification, respectively, there is a need for new dedicated techniques with the primary emphasis on simplicity, sensitivity, speed and cost effectiveness. The main purpose of this work was to integrate diverse assays for both EGFR tests onto a single platform to eliminate the need for different instruments and separate processing. We demonstrate a chip capillary electrophoresis (chipCE) application for EGFR mutation detection by a combination of fragment analysis and denaturing CE along with multiplex ligation-dependent probe amplification (MLPA) for evaluation of EGFR amplification. All separations are carried out in denaturing sieving polymer on a modified Bioanalyzer 2100 chipCE instrument running at temperatures of up to 65°C. The main strength of the resulting high-resolution chipCE application is in its simplicity, speed of analysis and minimal amount of sample required for complete testing of EGFR status. Such an approach could potentially fit medium throughput laboratories providing molecular pathology services for clinical oncologists with fast turnaround times and limited consumption of tissue material.  相似文献   
964.
965.
Automated matrix deposition for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is crucial for producing reproducible analyte ion signals. Here we report an innovative method employing an automated immersion apparatus, which enables a robust matrix deposition within 5 minutes and with scalable throughput by using MAPS matrix and non‐polar solvents. MSI results received from mouse heart and rat brain tissues were qualitatively similar to those from nozzle sprayed samples with respect to peak number and quality of the ion images. Overall, the immersion‐method enables a fast and careful matrix deposition and has the future potential for implementation in clinical tissue diagnostics.  相似文献   
966.
A simple and rapid liquid chromatography–mass spectrometry (LC‐MS) method was developed and validated for analysis of ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, icariin and epimedin A, B, C in rat target tissues (spinal cord, brain, muscle and sciatic nerve) after intravenous administration of Jiweiling freeze‐dried powder using genistein as an internal standard (IS). The tissue samples were treated by protein precipitation with methanol prior to HPLC and chromatographic separation was performed on a C18 column utilizing a gradient elution program with acetonitrile and 0.1% formic acid aqueous. Electrospray ionization (ESI) source was employed and the 11 analytes and IS were detected by multiple reaction monitoring (MRM) scanning under the negative ionization mode. Higher sensitivity was achieved and the optimized mass transition ion‐pairs (m/z) for quantitation were selected. The calibration curves were linear over the investigated concentration ranges with correlation coefficients higher than 0.995. The intra‐ and inter‐day RSDs were all less than 10% with the relative error (RE) within ±9.3%. The mean extraction recoveries for all compounds were between 93.3 and 106%. The proposed method was successfully applied to investigate the target tissue distribution of the 11 compounds in rat after intravenous administration of Jiweiling freeze‐dried powder. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
967.
LS‐177 is a novel small‐molecule kinase inhibitor employed to interrupt the c‐Met signaling pathway. A rapid and sensitive ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for determination of LS‐177 in rat plasma and tissues. The biosamples were extracted by liquid–liquid extraction with methyl tert‐butyl ether and separated on a C18 column (50 × 4.6 mm, 2.6 µm) using a gradient elution mobile phase consisting of acetonitrile–0.1% formic acid water. Under the optimal conditions, the selectivity of the method was satisfactory with no endogenous interference. The intraday and interday precisions (relative standard deviation) were <10.5% and the accuracy (relative error) was from ?12.5 to 12.5% at all quality control levels. Excellent recovery and negligible matrix effects were observed. Stability studies showed that LS‐177 was stable during the preparation and analytical processes. The UPLC‐MS/MS method was successfully applied to pharmacokinetic and tissue distribution studies. The results indicated that there was no significant drug accumulation after multiple‐dose oral administration of LS‐177. The tissue distribution study exhibited significant higher uptakes of LS‐177 in stomach, intestine, lung and liver among all of the tissues. The results in pharmacokinetics and tissue distribution may provide a meaningful basis for clinical application. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
968.
A simple, fast and low‐cost extraction method with high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) determination was developed on sulfonamide antibiotics (SAs) in fish tissue. Magnetic separation was first introduced into the rapid sample preparation procedure combined with acetonitrile extraction for the analysis of SAs. Partitioning was rapidly achieved between acetonitrile solution and solid matrix by applying an external magnetic field. Acetonitrile solution was collected and concentrated under a nitrogen stream. The residue was redissolved with 1‰ formic acid aqueous solution and defatted with n‐hexane before analysis. The recoveries of SAs were in the range of 74.87–104.74%, with relative standard deviations <13%. The limits of quantification and the limits of detection for SAs ranged from 5.0 to 25.0 μg kg?1 and from 2.5 to 10.0 μg kg?1, respectively. The presented extraction method proved to be a rapid method which only took 20 min for one sample preparation procedure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
969.
A specific, sensitive and stable high‐performance liquid chromatography (HPLC)‐based analytical method was established to determine the level of pefloxacin mesylate (PM) in the plasma and various tissues of chickens. Chickens were randomly assigned to 12 equal experiment groups, including 11 treatment groups and one control group. The chickens in the treatment groups received oral administration of PM and were sacrificed at different pre‐determined time points, with their blood and various organs harvested, extracted and analyzed by HPLC to quantify the level of the residual antibiotic. Method validation studies indicated that the HPLC measurement showed excellent precision, reproducibility, stability and robustness. The obtained pharmacokinetic parameters suggested that PM reached peak levels in various tissues within 1–2 h after its oral administration, and was mainly concentrated in liver and kidney. The antibiotic was also found to be cleared from chicken crureus, brain, testes, ovaries and pancreas at higher rates compared with other organs. Overall, the rapid accumulation of PM could at least be partially attributed to its relatively slow organ clearance. These results could serve as a useful guidance for the rational use of PM and other quinolone‐derived antimicrobials in the treatment of infectious diseases in chickens and other animals.  相似文献   
970.
Peripheral nerve injury is a large‐scale problem and it is a great challenge to repair the long lesion in a thick nerve. The design of a multi‐tubular conduit with a honeycomb structure by mimicking the anatomy of a peripheral nerve for the potential repair of large defects in thick nerves has been reported. A bilayer mat of electrospun nanofibers is rolled up to form a single tube, with the inner and outer layers comprised aligned and random nanofibers, respectively. Seven such tubes are then assembled into a hexagonal array and encased within the lumen of a larger tube to form the multi‐tubular conduit. By introducing an adhesive to the regions between the tubes, the conduit is robust enough for handling during surgery. The seeded bone marrow stem cells (BMSCs) are able to proliferate in all the tubes with even circumferential and longitudinal distributions. Under chemical induction, the BMSCs are transdifferentiated into Schwann‐like cells in all the tubes. While the cellular version holds great promise for peripheral nerve repair, the multi‐tubular conduit can also be used to investigate the fundamental aspects involved in the development of peripheral nervous system and migration of cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号