首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   713篇
  免费   65篇
  国内免费   256篇
化学   636篇
晶体学   13篇
力学   38篇
综合类   1篇
数学   22篇
物理学   324篇
  2024年   2篇
  2023年   20篇
  2022年   26篇
  2021年   34篇
  2020年   44篇
  2019年   21篇
  2018年   16篇
  2017年   42篇
  2016年   21篇
  2015年   21篇
  2014年   43篇
  2013年   49篇
  2012年   46篇
  2011年   81篇
  2010年   41篇
  2009年   65篇
  2008年   62篇
  2007年   53篇
  2006年   59篇
  2005年   41篇
  2004年   40篇
  2003年   32篇
  2002年   27篇
  2001年   19篇
  2000年   17篇
  1999年   16篇
  1998年   15篇
  1997年   12篇
  1996年   12篇
  1995年   12篇
  1994年   4篇
  1993年   9篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1034条查询结果,搜索用时 609 毫秒
31.
锂离子电池正极材料正在向着高比能量、长寿命、低成本、环境友好的方向发展,而具有橄榄石结构的LiFePO_4正极材料以其结构稳定、成本低、无污染等优点成为21世纪最理想的绿色电源,但自身也存在缺点。综述了锂离子电池正极材料LiFePO_4的研究进展。系统地阐述了LiFePO_4的晶体结构特征及性能、多种合成方法以及掺杂多种导电材料和控制晶体生长制备纳米粉体对材料性能的影响。对该材料的应用前景进行了展望,并提出了下一步可能的研究趋势。  相似文献   
32.
A cobalt-poor or iron rich bicomponent mixture of Co0.9Fe2.1O4/Fe2O3 and Co0.8Fe2.2O4/Fe2O3 anode materials have been successfully prepared using simple, cost-effective, and scalable urea-assisted auto-combustion synthesis. The threshold limit of lower cobalt stoichiometry in CoFe2O4 that leads to impressive electrochemical performance was identified. The electrochemical performance shows that the Co0.9Fe2.1O4/Fe2O3 electrode exhibits high capacity and rate capability in comparison to a Co0.8Fe2.2O4/Fe2O3 electrode, and the obtained data is comparable with that reported for cobalt-rich CoFe2O4. The better rate performance of the Co0.9Fe2.1O4/Fe2O3 electrode is ascribed to its unique stoichiometry, which intimately prefers the combination of Fe2O3 with Co1−xFe2+xO4 and the high electrical conductivity. Further, the high reversible capacity in Co0.9Fe2.1O4/Fe2O3 and Co0.8Fe2.2O4/Fe2O3 electrodes is most likely attributed to the synergistic electrochemical activity of both the nanostructured materials (Co1−xFe2+xO4 and Fe2O3), reaching beyond the well-established mechanisms of charge storage in these two phases.  相似文献   
33.
Nanoporous-silicon (np-Si) flakes were prepared using a combination of an electrochemical etching process and an ultra-sonication treatment and the electrochemical properties were studied as an anode active material for rechargeable lithium-ion batteries (LIBs). This fabrication method is a simple, reproducible, and cost effective way to make high-performance Si-based anode active materials in LIBs. The anode based on np-Si flakes exhibited a higher performances (lower capacity fade rate, stability and excellent rate capability at high C-rate) than the anode based on Si nanowires. The excellent performance of the np-Si flake anode was attributed to the hollowness (nanoporous structure) of the anode active material, which allowed it to accommodate a large volume change during cycling.  相似文献   
34.
Electrical impedance spectroscopy was used to measure the conductivity of solid polymer electrolytes. From the impedance study, the highest ionic conductivity of solid polymer electrolytes based on carboxyl methylcellulose as polymer host and oleic acid as the doping salt, prepared by the solution casting method at room temperature, σr.t, is 2.11 × 10?5 S cm?1 for the sample containing 20 wt.% of oleic acid. Transference number measurement was performed to correlate the diffusion phenomena to the conductivity behavior of carboxyl methylcellulose-oleic acid solid polymer electrolytes. From the transference number measurement study, the conduction species carrier of the cation (+) is higher than that of the anion (?). Thus, the results proved that the samples are proton-conducting solid polymer electrolytes.  相似文献   
35.
Two approaches to treat solvent polarization and reorientation effects for excited states of molecules and surfaces have been implemented in the recently developed MSINDO‐sCIS method (Gadaczek, Krause, Hintze, Bredow, J. Chem. Theory Comput. 2011, 7, 3675). They allow for an efficient calculation of analytical energy gradients and hence open the opportunity to investigate fluorescence effects or photochemical reactions in solution for large molecules that are difficult to treat with high‐level methods. Both approaches are based on the conductor‐like screening model (COSMO) (Klamt and Schüürmann, J. Chem. Soc., Perkin Trans. 1993, 2, 799) in combination with the configuration interaction singles (CIS) method (Foresman, Head‐Gordon, Pople, and Frisch, J. Phys. Chem. 1992, 96, 135). The paper gives a brief outline of the theoretical background. As a first application, solvent shifts of three well‐studied, environment‐sensitive fluorescent dyes (Kucherak, Didier, Mély, and Klymchenko, J. Phys. Chem. Lett. 2010, 1, 616) have been calculated and compared with experimental results and standard time‐dependent density functional theory. A statistical evaluation of MSINDO‐COSMO‐sCIS is provided for a set of 39 molecules suggested recently by Jacquemin et al. (Jacquemin, Planchat, Adamo, and Mennucci, J. Chem. Theory Comput. 2012, 8, 2359). Calculated vertical and adiabatic excitation energies and fluorescence energies are compared to experimental data. © 2014 Wiley Periodicals, Inc.  相似文献   
36.
我们通过包覆炭化的方法制备得到了石墨烯包覆的天然球形石墨(G/SG)材料,并使用扫描电子显微镜、X射线衍射仪以及多种电化学测试手段考察了不同石墨烯含量的复合材料的形貌结构及电化学性能。我们发现,在不添加乙炔黑(AB)的情况下,G/SG复合材料表现出较高的首次库伦效率,很好的循环稳定性和高倍率性能。当石墨烯包覆量为1%时,材料50次循环后的可逆容量可与添加10%AB的天然石墨电极(SG)等同;当石墨烯包覆量为2.5%时,材料的比容量完全高于添加10%AB的石墨电极。材料电化学性能的改善归因于石墨烯的包覆。一方面,石墨烯的柔软可变性可以保证天然石墨颗粒在充放电过程中的结构完整性,从而有效改善材料的循环稳定性;另一方面,石墨烯的存在提高了电极的导电性,促进更好导电网络的形成。因此,石墨烯包覆天然球形石墨材料中,石墨烯不仅是活性物质,也发挥导电剂的作用。当添加5%的乙炔黑时,在50 mA·g-1电流循环50次后,5%G/SG电极的可逆容量从381.1 mAh·g-1提高到404.5 mAh·g-1,在1 A·g-1电流时可逆容量从82.5 mAh·g-1提高到101.9 mAh·g-1,这表明G/SG电极仍然需要乙炔黑导电剂。乙炔黑颗粒填充在复合材料的空隙中,通过点接触的形式连接到G/SG颗粒,与石墨烯协同作用形成了更加有效的导电网络。尽管石墨烯包覆和乙炔黑添加对天然石墨电极具有积极的影响,例如增加了天然石墨电极的导电性和储锂性能(包括可逆容量,倍率性能和循环性能),但随着石墨烯或乙炔黑的增加,电极密度通常会降低。因此,在实际应用中应考虑石墨负极材料的质量和体积容量的平衡。这些结果对天然石墨的进一步商业应用具有重要意义。我们的工作为天然石墨电极在锂电池中的电化学行为提供了一种新的认识,并且有助于制备更高性能的负极材料。  相似文献   
37.
Organic carbonyl-based compounds with redox-active site have recently gained full attention as organic cathode material in lithium-ion batteries (LIBs) owing to its high cyclability, low cost, high abundance, tunability of their chemical structure compared to traditionally used inorganic material. However, the utilization of organic carbonyl-based compounds in LIBs is limited to its poor charge capacity and dissolution of lower molecular weight species in electrolytes. In this study, we theoretically investigated five set of cyclohexanone derivatives (denoted as: H1, H2, H3, H4, and H5) and influence of functional groups (-F and -NH2) on their electrochemical properties using advanced level density functional theory (DFT) with the Perdew-Burke-Ernzenhof hybrid functional (PBE0) at 6-31+G(d,p) basis set. In line with the result gotten, the HOMO-LUMO results revealed that compound H5 is the most reactive among the studied cyclohexanone derivatives exhibiting energy gap values of 0.552, 0.532, 0.772 eV for free optimized structures and structurally engineered structures with electron withdrawing group (EWG) and electron donating group (EDG) respectively. Also, results from electrochemical properties of the studied compounds lithiated with only one lithium atom displayed that compound H2 exhibited interesting redox potential and energy density for all the studied structures in free optimized state (1108.28 W h kg?1, 4.92 V vs Li/Li+), with EWG (648.22 W h kg?1, 3.313 V Li/Li+), and with EDG (1002.4 W h kg?1, 5.011 V vs Li/Li+). From our result, we can infer that compound H2 and H3 with corresponding redox potential, energy density and theoretical charge capacity value of 4.92 V vs Li/Li+, 1108.28 W h kg?1, 225.26 mA h g?1 and 5.168 V, 1041.61 W h kg?1, 201.55 mA h g?1 lithiated with only one lithium atom in free optimized state are the most suitable compounds to be employed as organic cathode material in lithium-ion batteries among all the investigated cyclohexanone derivatives.  相似文献   
38.
As the energy density of state-of-the-art lithium (Li)-ion batteries (LIBs) increases, the safety concern of LIBs using liquid electrolytes is drawing increasing attention. Flammability of electrolytes is a critical link of the overall safety performance of LIBs and Li metal batteries. For this reason, intensive efforts have been devoted to suppressing the flammability of liquid electrolytes. In this short review, the common approaches to reduce the flammability of the nonaqueous liquid electrolytes will be summarized. The advantages and limitations of these approaches will also be discussed.  相似文献   
39.
Spinel-structured solids were studied to understand if fast Li+ ion conduction can be achieved with Li occupying multiple crystallographic sites of the structure to form a “Li-stuffed” spinel, and if the concept is applicable to prepare a high mixed electronic-ionic conductive, electrochemically active solid solution of the Li+ stuffed spinel with spinel-structured Li-ion battery electrodes. This could enable a single-phase fully solid electrode eliminating multi-phase interface incompatibility and impedance commonly observed in multi-phase solid electrolyte–cathode composites. Materials of composition Li1.25M(III)0.25TiO4, M(III) = Cr or Al were prepared through solid-state methods. The room-temperature bulk Li+-ion conductivity is 1.63 × 10−4 S cm−1 for the composition Li1.25Cr0.25Ti1.5O4. Addition of Li3BO3 (LBO) increases ionic and electronic conductivity reaching a bulk Li+ ion conductivity averaging 6.8 × 10−4 S cm−1, a total Li-ion conductivity averaging 4.2 × 10−4 S cm−1, and electronic conductivity averaging 3.8 × 10−4 S cm−1 for the composition Li1.25Cr0.25Ti1.5O4 with 1 wt. % LBO. An electrochemically active solid solution of Li1.25Cr0.25Mn1.5O4 and LiNi0.5Mn1.5O4 was prepared. This work proves that Li-stuffed spinels can achieve fast Li-ion conduction and that the concept is potentially useful to enable a single-phase fully solid electrode without interphase impedance.  相似文献   
40.
《印度化学会志》2021,98(9):100137
Numerous studies confirm that three dimensional porous Cu–Sn (3DP Cu–Sn) anode possesses good application prospect in light of its desirable electrochemical performance on lithium ion half cells, but there are a few related systematic researches on lithium ion full cells until now, which is indispensable before its commercialization. Herein, the effects of galvanostatic charge-discharge voltage range on the cycling stability of 3DP Cu–Sn anode for lithium ion full cells are investigated systematically. The results show that the suitable charge-discharge voltage range plays a key role in improving the reversible capacity and cycling stability of the 3DP Cu–Sn||LiCoO2 full cell, which is closely related to maintaining the electrode structure stable by controlling the amount of Li+ extracted and inserted. Especially, in the voltage range of 1.2–3.9 ​V, the full cell exhibits remarkably improved electrochemical properties with the high initial reversible capacity of 2.71 ​mAh cm−2 and 71.95% capacity retention upon 80 cycles. We believe that this work can provide a significant reference for the practical application of porous Sn-based anodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号