首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6996篇
  免费   668篇
  国内免费   1486篇
化学   7246篇
晶体学   182篇
力学   278篇
综合类   55篇
数学   14篇
物理学   1375篇
  2024年   21篇
  2023年   134篇
  2022年   157篇
  2021年   201篇
  2020年   243篇
  2019年   230篇
  2018年   166篇
  2017年   211篇
  2016年   293篇
  2015年   293篇
  2014年   369篇
  2013年   659篇
  2012年   461篇
  2011年   475篇
  2010年   381篇
  2009年   369篇
  2008年   404篇
  2007年   424篇
  2006年   476篇
  2005年   390篇
  2004年   438篇
  2003年   387篇
  2002年   323篇
  2001年   228篇
  2000年   206篇
  1999年   181篇
  1998年   182篇
  1997年   155篇
  1996年   127篇
  1995年   115篇
  1994年   94篇
  1993年   64篇
  1992年   55篇
  1991年   52篇
  1990年   28篇
  1989年   30篇
  1988年   34篇
  1987年   14篇
  1986年   14篇
  1985年   13篇
  1984年   8篇
  1983年   4篇
  1982年   5篇
  1981年   6篇
  1980年   8篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1975年   4篇
  1973年   4篇
排序方式: 共有9150条查询结果,搜索用时 15 毫秒
991.
Uniformly sized and shape-controlled nanoparticles are important due to their applications in catalysis, electrochemistry, ion exchange, molecular adsorption, and electronics. Several ferric phosphate hydroxide (Fe4(OH)3(PO4)3) microstructures were successfully prepared under hydrothermal conditions. Using controlled variations in the reaction conditions, such as reaction time, temperature, and amount of hexadecyltrimethylammonium bromide (CTAB), the crystals can be grown as almost perfect hyperbranched microcrystals at 180 °C (without CTAB) or relatively monodisperse particles at 220 °C (with CTAB). The large hyperbranched structure of Fe4(OH)3(PO4)3 with a size of ∼19 μm forms with the “fractal growth rule” and shows many branches. More importantly, the magnetic properties of these materials are directly correlated to their size and micro/nanostructure morphology. Interestingly, the blocking temperature (TB) shows a dependence on size and shape, and a smaller size resulted in a lower TB. These crystals are good examples that prove that physical and chemical properties of nano/microstructured materials are related to their structures, and the precise control of the morphology of such functional materials could allow for the control of their performance.  相似文献   
992.
The development of novel selective probes with high sensitivity for the detection of Al3+ is widely considered an important research goal due to the importance of such probes in medicine, living systems and the environment. Here, we describe a new fluorescent probe, N′-(4-diethylamino-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (1), for Al3+. Probe 1 was evaluated in a solution of acetonitrile/water (1:1 v/v). Compared with previously reported probes for Al3+, probe 1 can be synthesized easily and in high yield. A Job plot confirmed that probe 1 is able to complex Al3+ in a 1:1 ratio, and the binding constant was determined to be 4.25×108m−1. Moreover, the detection limit was as low as 6.7×10−9m, suggesting that probe 1 has a high sensitivity. Common coexistent metal ions, such as K+, Co2+, Ca2+, Ba2+, Ni2+, Pb2+, Hg2+, Ce2+, Zn2+, Cd2+, Fe3+, showed little or no interference in the detection of Al3+ in solution, demonstrating the high selectivity of the probe. Finally, the ability of probe 1 to act as a fluorescent probe for Al3+ in living systems was evaluated in Gram-negative bacteria, Escherichia coli, and confocal laser scanning microscopy confirmed its utility. The results of this study suggest that 1 has appropriate properties to be developed for application as a fluorescent probe of Al3+ for use in biological studies.  相似文献   
993.
Deprotonation of the yttrium–arsine complex [Cp′3Y{As(H)2Mes}] ( 1 ) (Cp′=η5‐C5H4Me, Mes=mesityl) by nBuLi produces the μ‐arsenide complex [{Cp′2Y[μ‐As(H)Mes]}3] ( 2 ). Deprotonation of the As H bonds in 2 by nBuLi produces [Li(thf)4]2[{Cp′2Y(μ3‐AsMes)}3Li], [Li(thf)4]2[ 3 ], in which the dianion 3 contains the first example of an arsinidene ligand in rare‐earth metal chemistry. The molecular structures of the arsine, arsenide, and arsinidene complexes are described, and the yttrium–arsenic bonding is analyzed by density functional theory.  相似文献   
994.
Aluminum hypophosphite (AHP) was introduced into polylactide/intumescent flame retardant (PLA/IFR) systems by melt blending. The flame retardant and thermal properties of the PLA composites were investigated. The results suggest that a synergistic effect exists between IFR and AHP on the char formation and anti‐dripping behavior of PLA composites. The PLA/IFR composites containing 10 wt% IFR can pass the UL‐94 V‐0 rating but the test is accompanied by heavy melt dripping. For the PLA/AHP a UL‐94 V‐2 rating is obtained for the same loading of IFR. However, the composites containing 7 wt% IFR and 3 wt% AHP pass the UL‐94 V‐0 rating with modified dripping behavior. Moreover, the char from combustion of PLA/IFR is flexible but of poor quality. That for PLA/AHP is brittle with many cracks. In contrast, that for PLA/IFR/AHP is strong and compact. Thus it can resist the erosion due to heat and gas formation and protect the inside of the matrix. In addition, AHP causes the crosslinking among APP, which promotes the char formation and prevents the melt dripping. This is the main reason for the good flame retardant properties of PLA composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
995.
996.
Nitrilotris(methylene)triphosphonic acid (NP) is a technologically important molecule that has been used for years as a corrosion inhibitor and/or adhesion promoter on aluminum and other metal surfaces. However, to the best of our knowledge, the detailed surface characterization of NP adsorbed on aluminum, or on any other surface, has not been reported. Herein, we report an X‐ray photoelectron spectroscopy and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) analysis of a series of untreated and NP‐coated aluminum substrates that were exposed to the downstream products of a fluoroalkane + oxygen plasma for different amounts of time (from 0 to 20 s). As indicated by P 2p, N 1s, Al 2p, O 1s, and F 1s narrow scans, even a 4‐s plasma treatment significantly damages the NP protective layer and converts the native aluminum oxide into aluminum oxyfluoride. Heat treatment of the fluorine plasma‐treated samples in the air substantially converts the aluminum oxyfluoride back to aluminum oxide, while similar heating under vacuum results in little change to the materials. A slow loss of fluorine from the samples occurs over the course of weeks when they are stored in the air. A ToF‐SIMS analysis reveals sets of signals that are consistent with no surface treatment, NP treatment, or fluorine plasma treatment. A principal component analysis of the negative ion ToF‐SIMS spectra from the samples shows the expected differentiation of the samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
997.
The effects of Y2O3 on the microstructure, phase composition of the coatings, microhardness and wear resistance of cobalt‐based composite coatings prepared by laser cladding were investigated. The TA15 titanium alloy was selected as substrate which the cobalt‐based composite powder with different content of Y2O3 was cladded on. The microstructure of the coatings was observed by scanning electron microscope (SEM) and metallurgical microscope. The phase structure of the coatings was determined by X‐ray diffraction (XRD), and the microhardness and wear resistance of the coatings were measured by hardness tester and wear testing machine. The results show that the rare earth oxide Y2O3 can refine and purify the microstructure of the coatings, reduce the porosities and cracks and improve compactness of the coatings. Moreover the addition of Y2O3 improves the microhardness of the coatings and reduces the friction coefficient, thus improving the wear property of the coatings. And the wear resistance of the coating with Y2O3 has improved about 50 times; the highest value of microhardness in the coating is HV1181.1. And 0.8 wt% content of Y2O3 in the coating is the best choice for improving the microhardness and wear resistance of the coating. It is feasible to improve the microstructure and tribological properties of laser cladding coatings by adding of Y2O3. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
998.
A well‐defined single‐site titanium‐modified montmorillonite (MMT) with only one geometric construction ((?SiO)3–Ti–NMe2) was obtained in moderate conditions. Reaction of tetrakis(dimethylamido)titanium with hydroxylated MMT was conducted by surface organometallic chemistry technique, and the surface structure was characterized by in situ Fourier transform infrared spectroscopy, 13C cross polarization magic angle spinning nuclear magnetic resonance, X‐ray photoelectron spectroscopy, extended X‐ray absorption fine structure, and elemental analysis. The catalytic activity in alkene epoxidation was evaluated, and the results revealed that the steric hindrance of the substances is responsible for the catalytic activity of the MMT‐supported titanium complex but to the characteristic restricted layer‐like structure of the MMT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
999.
Synthesis of titanium oxide film by plasma oxidization of the metallic films is investigated. Argon/oxygen gas mixture in the pressure range 30 × 10?2 mbar is used for plasma processing at a frequency of 250 kHz. The plasma‐oxidized films are annealed in a tube furnace in argon atmosphere to establish crystalline‐phase formation. X‐ray diffraction and Raman spectroscopic results manifest peaks corresponding to rutile TiO2. Ultraviolet‐Visible (UV‐Vis) spectroscopic analysis confirms the bandgap of rutile TiO2, and photoluminescence spectra exhibit peaks due to oxygen defects. Homogeneity across the film's thickness and the nature of the film substrate interface is studied by depth profiling acquired using secondary ion mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
1000.
新能源战略体系的建设和电子技术的飞速发展对储能器件的性能提出了更高的要求,锂离子电容器是将锂离子电池和双电层电容器“内部交叉”的新型混合储能器件,兼具高能量密度和高功率密度,近年来引起了国内外的广泛关注.本文阐述了锂离子电容器的工作原理和国内外产业发展现状,总结了碳负极的预赋锂技术、电极材料与体系匹配性研究等关键技术前沿的研究成果,并提出了后续产业化研究中所需要解决的实际问题.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号