首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6400篇
  免费   711篇
  国内免费   499篇
化学   1549篇
晶体学   84篇
力学   1313篇
综合类   29篇
数学   140篇
物理学   4495篇
  2024年   12篇
  2023年   45篇
  2022年   129篇
  2021年   135篇
  2020年   99篇
  2019年   128篇
  2018年   104篇
  2017年   193篇
  2016年   243篇
  2015年   196篇
  2014年   329篇
  2013年   422篇
  2012年   254篇
  2011年   490篇
  2010年   361篇
  2009年   479篇
  2008年   428篇
  2007年   542篇
  2006年   465篇
  2005年   342篇
  2004年   304篇
  2003年   226篇
  2002年   199篇
  2001年   215篇
  2000年   169篇
  1999年   155篇
  1998年   162篇
  1997年   117篇
  1996年   82篇
  1995年   105篇
  1994年   96篇
  1993年   69篇
  1992年   62篇
  1991年   57篇
  1990年   37篇
  1989年   33篇
  1988年   36篇
  1987年   19篇
  1986年   12篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1975年   4篇
  1974年   3篇
  1973年   9篇
  1957年   2篇
排序方式: 共有7610条查询结果,搜索用时 15 毫秒
131.
132.
Porphyrin derivatives are known singlet oxygen sensitizers in photodynamic therapy (PDT). Energy transfer from a class of diolefinic laser dyes (DOLDs) as energy donors to the sodium salt of meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) as the accepter of energy would extend the range of photon harvesting down to the UV-region. Energy transfer was substantially enhanced in the presence of metallic silver nanoparticles (AgNPs), as revealed by steady-state emission spectroscopy, lifetimes, and quantum mechanics. DOLDs under investigation are 2,5-distyrylpyrazine (DSP), 1,4-bis (β-pyridyl-2 vinyl) benzene (P2VB), and 1,4 bis (2-methylstyryl) benzene (MSB) as efficient donors of intense absorption in the UV-region. AgNPs enhance the rate of energy transfer from DOLDs to TPPS via bringing donor and acceptor into close- proximity with a concomitant increase in dipole–dipole interaction between excited state donor and ground-state acceptor. The DOLDs molecular structures were optimized using the DFT/CAM-B3LYP/6-311G++ (d, p) level of theory. The calculated electronic absorption spectra for the studied DOLDs in the gaseous phase and methanol solvent were studied using the time-dependent density functional theory (TD-DFT) at M06-2X/6-311G++ (2d,2p) level. The calculated absorption/emission spectra for DSP laser dye in methanol are obtained at the TD/ M06-2X/6-311G++(2d, 2p) method. Notably, all theoretical results of the molecular structures under study highly agreed with the practical optical results. Energy transfer rate constants (kET) amid energy donor/acceptor pairs were determined by Stern-Volmer constants (KSV) and donors' lifetime measurements. The KSV values indicate an enhanced Fluorescence Resonance Energy Transfer (FRET) efficiencies in the presence of negatively charged AgNPs. The critical transfer distances Ro were determined from the spectral overlap between the emission spectrum of donor and absorption spectrum of TTPS. These outcomes propose the application of designed metal-enhanced FRET for energy-transfer-based assays and photodynamic therapy (PDT) applications.  相似文献   
133.
The societal cost of micronutrient deficiency (MND) or the “hidden hunger” is in millions of dollars/year, reducing the GDP of some countries by as much as 11%. Zn is an important micronutrient for both plants and animals. An estimated 17% of the world population, or around 1.1 billion people, are at the risk of zinc (Zn) deficiency. The deficiency has been related to adverse pregnancy outcomes, stunted growth, premature deaths, immune system dysfunctions, neuro-behavioral disorders, and recently with the failure to recover from COVID-19. These health risks associated with Zn deficiency have compelled FAO and WHO to recommend Zn fortification of diet. Correcting Zn deficiency is a challenge due to several reasons. Close to half of the agricultural soils are Zn deficient, and chemical Zn fertilizers are costly and ineffective. Developing Zn-rich crops through plant breeding and genetic engineering is challenging. Zn-dense diet is costly and cannot be implemented in the low-income region most affected by Zn deficiency. Lack of consensus among regulatory bodies on defining and diagnosing Zn deficiency in plants and Humans. Awareness and other sociocultural issues. Among the most important available solutions are zinc biofortification of the cereal crops, use of zinc biofertilizers, development of Zn-efficient crops with reduced phytate content. The use of Zn supplements, dietary modification, and diversification, especially with fish, are proposed as the most accessible and affordable solutions. Awareness programs in areas suffering the most from Zn deficiency are required. Despite the suggestions from FAO and WHO, global efforts to combat Zn deficiency matching those for combating diseases like HIV are not in place. Coordinated efforts of the international community, especially policy-makers, agricultural scientists, dieticians, physicians, and others, are required to address the issue of hidden hunger.  相似文献   
134.
In this study, ultrasound-assisted extraction of polyphenols from C. cicadae was optimized by response surface methodology (RSM). The optimized conditions were determined as extraction time of 39 min, liquid-to-solid ratio of 1:29 g/mL, extraction temperature of 69 °C and ethanol concentration of 55% with a yield of 21.9 mg gallic acid equivalent/g dry weight. Four resins were used for polyphenol purification. D101 resin had the highest ratio of adsorption and was further applied in polyphenol purification test. A total of 19 different phenolic compounds were identified by LC-MS, including 12 phenolic acids and 7 organic acids. In addition, C. cicadae polyphenols displayed higher antioxidant activity in vitro and anti-aging activity of C. elegans in vivo. Lastly, C. cicadae polyphenols showed the potential to protect DNA from oxidative damage. Overall, our results suggest that polyphenols from C. cicadae may be considered as novel sources of anti-oxidation, anti-aging and recommended as reagents to protect DNA from oxidative damage in food and pharmaceutical industries.  相似文献   
135.
如何强化安全工程教育是化学化工类专业高等教育的一个重要课题。通过对蒸汽锅炉爆炸、火灾爆燃事故以及锈蚀危害等3个实例的详细讲述,指出在物理化学的教学中,若适时融入相关的安全工程教育,可以使学生深刻理解安全事故发生及防范所依赖的物理化学原理,从而起到安全意识的内化作用。教学中现代教育技术的引入可以增强这一效果。  相似文献   
136.
We made a study of controlling diameters of well-aligned ZnO nanorods grown by low-pressure thermal chemical vapor deposition combined with laser ablation of a sintered ZnO target, which was developed by us. Until now, it has been impossible to control diameters of ZnO nanorods, while the growth orientation was maintained well-aligned. In this study we developed a multi-step growth method to fabricate well-aligned nanorods whose diameters could be controlled. Metal Zn vapor and O2 are used as precursors to grow ZnO nanorods. N2 is used as a carrier gas for the precursors. A substrate is an n-Si (111) wafer. A sintered ZnO target is placed near the substrate and ablated by a Nd–YAG pulsed laser during ZnO nanorod growth. The growth temperature is 530 C and the pressure is 66.5 Pa. A vertical growth orientation of ZnO nanorods to the substrate is realized in the first-step growth although the diameter cannot be controlled in this step. When an O2 flow rate is 1.5 sccm, well-aligned nanorods with 100 nm diameter are grown. Next, the second-step nanorods are grown on only the flat tip of the first-step nanorods. The diameters of the second-step nanorods can be controlled by adjusting the O2 flow rate, and the growth direction is kept the same as that of the first-step nanorods. When the O2 flow rate in second-step growth is smaller than 0.6 sccm, the diameter of the second-step nanorods is 30–50 nm. When the O2 flow rate is between 0.75 and 3.0 sccm, the diameter is almost same as that of the first-step nanorods. When the O2 flow rate is larger than 4.5 sccm, the diameter is increased with increasing O2 flow rate. Further, the third-step ZnO nanorods with gradually increased diameters can be grown on the second-step nanorods with 1.5 sccm O2 flow rate and without laser ablation.  相似文献   
137.
Atomic surface structures of nanoparticles are of interest in catalysis and other fields. Aberration-corrected HREM facilitates direct imaging of the surfaces of nanoparticles. A remaining concern of surface imaging arises from beam damage. It is important to identify the intrinsic surface structures and the ones created by electron beam irradiation in TEM. In this study, we performed aberration-corrected HREM and EELS to demonstrate that TiO and bcc type Ti islands form due to intense electron irradiation. The formation of Ti-rich islands is in agreement with previous high temperature annealing experiments on the surfaces of SrTiO3 single crystals.  相似文献   
138.
Transmission electron microscopy is undoubtedly an indispensable tool for materials characterization, which can currently reach sub-angstrom resolution down to the elemental building blocks of matter, isolated single atoms of most elements. In addition to the phenomenal image resolution, if the material is strong enough, it can be accompanied with chemical information, converting electron microscopy into a unique method for the analysis of a great variety of materials. Unfortunately, extracting all this valuable information is not simple as most materials in one way or another are affected by the strong and localized electron beam. Radiolysis is one kind of reaction between electrons and matter than can cause irreversible structural transformations in our materials. This effect is the predominant factor in zeolites, zeotypes and the majority of molecular sieves. In the present work some results, taken at high voltage (300 kV) and minimizing the exposure to the beam, are presented proving the feasibility of the technique to obtain unprecedented atomic resolution information of different zeolites and microporous solids.  相似文献   
139.
140.
Pulsed discharge is used for sterilization and disinfection, but the details of the molecular mechanisms remain largely unknown. Since pulsed discharge generates reactive oxygen species (ROS), we analyzed the oxidative DNA damages after pulsed discharge treatment to consider the involvement of ROS in the damaging process. We applied pulsed discharge with cavitation to plasmid DNA molecules and estimated the yields of the damages by agarose gel electrophoresis. The treated DNA contained various oxidative DNA damages, including single and double strand breaks and base lesions. The yields of the damages increased in response to the energy used for pulsed discharge. We also measured the yield of 8-hydroxyguanine (8-OH-G), one of the major oxidative base lesions, in the treated plasmid DNA by mass spectrometry quantitatively and found that the yield of the oxidative base lesion corresponded to the increment of the applied energy. In addition, we observed the involvement of mutM gene, which is responsible for repair of 8-OH-G, in the increased sensitivity of Escherichia coli to pulsed discharge. Therefore, ROS seem to mediate the sterilization ability of pulsed discharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号