首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61665篇
  免费   5352篇
  国内免费   11975篇
化学   52761篇
晶体学   1997篇
力学   825篇
综合类   497篇
数学   7956篇
物理学   14956篇
  2024年   170篇
  2023年   1043篇
  2022年   1995篇
  2021年   1977篇
  2020年   2012篇
  2019年   1955篇
  2018年   1655篇
  2017年   2005篇
  2016年   2085篇
  2015年   1816篇
  2014年   2454篇
  2013年   5422篇
  2012年   3751篇
  2011年   4132篇
  2010年   3571篇
  2009年   4411篇
  2008年   4277篇
  2007年   4243篇
  2006年   3970篇
  2005年   3410篇
  2004年   3260篇
  2003年   2670篇
  2002年   2291篇
  2001年   1862篇
  2000年   1746篇
  1999年   1482篇
  1998年   1232篇
  1997年   1076篇
  1996年   984篇
  1995年   989篇
  1994年   892篇
  1993年   706篇
  1992年   642篇
  1991年   483篇
  1990年   346篇
  1989年   322篇
  1988年   257篇
  1987年   173篇
  1986年   148篇
  1985年   157篇
  1984年   141篇
  1983年   52篇
  1982年   99篇
  1981年   142篇
  1980年   102篇
  1979年   98篇
  1978年   66篇
  1977年   62篇
  1976年   45篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
研究了钍与5-(对羧基苯偶氮)-8-羟基喹啉(5-CPAHQ)的显色反应条件:在阳离子表面活性剂十六烷基三甲基溴化铵(CTMAB)存在下,pH4.4-5.4缓冲介质中,形成稳定的橙红色络合物,最大吸收波长为490nm,ε=1.10×105L·mol-1·cm-1,钍在0-9μg/25mL范围内符合比尔定律。用TBP萃淋树脂分离,该方法可用于测定矿石中的微量钍。  相似文献   
42.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   
43.
Based on the rank analysis method, algorithmization idea, and symbolic computation, in this paper we have presented a method to construct the conservation laws for nonlinear evolution equations. The polynomial conservation laws for K (n 2, n) equations and mnK(m, n) equations are found by using of this approach and some new results have been obtained.  相似文献   
44.
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006  相似文献   
45.
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006  相似文献   
46.
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006  相似文献   
47.
Nitroxide‐mediated radical polymerization (NMRP) of 2‐(dimethylamino)ethyl acrylate (DMAEA) was carried out at 100–120 °C, initiated by MONAMS, an alkoxyamine based on Ntert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl)nitroxide, SG1. Controlled polymerization can be achieved by the addition of free SG1 (the initial molar ratio of SG1 to MONAMS ranged from 0.06 to 0.12), giving a linear first‐order kinetic plot up to 55–70% conversion depending on the reaction conditions. The molecular weights show a near linear increase with conversion; however, they deviate to some extent with theoretical values. SG1‐mediated polymerization of DMAEA at 112 °C is also controlled in organic solvents (N,N‐dimethylformide, anisole, xylene). Polymerization rate increases with increasing solvent polarity. Chain transfer to polymer produces ~1 mol % branches in bulk and 1.2–1.9 mol % in organic solvents, typical of those for acrylates. From poly(styrene) (pS) and poly(n‐butyl acrylate) (pBA) macroinitiators, amphiphilic di‐ and triblock copolymers p(S‐b‐DMAEA), p(DMAEA‐b‐S‐b‐DMAEA), p(BA‐b‐DMAEA), and p(DMAEA‐b‐BA‐b‐DMAEA) were synthesized via NMRP at 110 °C. Polymers were characterized by GPC, NMR, surface tension measurements, and DSC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 414–426, 2006  相似文献   
48.
Well‐defined polystyrene‐ (PSt) or poly(ε‐caprolactone) (PCL)‐based polymers containing mid‐ or end‐chain 2,5 or 3,5‐ dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP) or ring opening polymerization (ROP). 1,4‐Dibromo‐2‐(bromomethyl)benzene, 1,3‐dibromo‐5‐(bromomethyl)benzene, and 1,4‐dibromo‐2,5‐di(bromomethyl)benzene were used as initiators in ATRP of styrene (St) in conjunction with CuBr/2,2′‐bipyridine as catalyst. 2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene initiated the ROP of ε‐caprolactone (CL) in the presence of stannous octoate (Sn(Oct)2) catalyst. The reaction of these polymers with amino‐ or aldehyde‐functionalized monoboronic acids, in Suzuki‐type couplings, afforded the corresponding telechelics. Further functionalization with oxidable groups such as 2‐pyrrolyl or 1‐naphthyl was attained by condensation reactions of the amino or aldehyde groups with low molecular weight aldehydes or amines, respectively, with the formation of azomethine linkages. Preliminary attempts for the synthesis of fully conjugated poly(Schiff base) with polymeric segments as substituents, by oxidative polymerization of the macromonomers, are presented. All the starting, intermediate, or final polymers were structurally analyzed by spectral methods (1H NMR, 13C NMR, and IR). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 727–743, 2006  相似文献   
49.
Two kinds of new glycopolymers, (P(VB‐1‐GlcaH‐co‐AAm), 9 ) and (P(VB‐1‐Glco‐co‐AAm), 10 ), were synthesized through the radical copolymerization of styrene derivatives bearing pendant D ‐glucaric and D ‐gluconic moieties, N‐(p‐vinylbenzyl)‐1‐D ‐glucaramide (VB‐1‐GlcaH, 7 ), and N‐(p‐vinylbenzyl)‐D ‐gluconamide (VB‐1‐Glco, 8 ), with acrylamide (AAm). Glycopolymer 9 bearing the pendant glucaric moiety at the first position inhibited the hydrolysis of a model compound for xenobiotics‐β‐glucuronide conjugates, p‐nitrophenyl β‐D ‐glucuronide, uncompetitively, in contrast to the competitive inhibition in the presence of the corresponding isomeric glycopolymer bearing the pendant D ‐glucaric unit at the sixth position (P(VB‐6‐GlcaH‐co‐AAm), 3 ) reported in our previous article. On the other hand, another copolymer 10 bearing the gluconic moiety was found not to inhibit the hydrolysis as well as the corresponding copolymer bearing pendant gulonic unit (P(VB‐6‐Glco‐co‐AAm), 4 ). These results indicate that the hydrolysis is influenced not only by existence of pendant carboxyl units but also by the direction on the linkage of the glyco‐units to the polymer frame. Therefore the configurational position of hydroxy groups in pendant glyco‐units in macromolecular inhibitors may be essential for the interaction with β‐glucuronidase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4895–4903, 2006  相似文献   
50.
A detailed kinetic model describing the surface transformation of spread liposomes along with their enzymatic hydrolysis was developed. The model was applied to the hydrolysis of the long-chain phosphatidylcholine generating reaction products which remain at the interface and to medium-chain substrates from which the products desorb rapidly into the bulk phase. The overall kinetic constants of the hydrolysis in liposomal systems were compared with those obtained with monolayers under barostatic conditions. The values of the interfacial Michaelis-Menten constant were estimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号