首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1013篇
  免费   47篇
  国内免费   27篇
化学   241篇
晶体学   3篇
力学   8篇
综合类   4篇
数学   13篇
物理学   818篇
  2024年   2篇
  2023年   10篇
  2022年   24篇
  2021年   25篇
  2020年   32篇
  2019年   25篇
  2018年   25篇
  2017年   24篇
  2016年   28篇
  2015年   25篇
  2014年   83篇
  2013年   105篇
  2012年   84篇
  2011年   56篇
  2010年   76篇
  2009年   80篇
  2008年   79篇
  2007年   66篇
  2006年   23篇
  2005年   31篇
  2004年   17篇
  2003年   28篇
  2002年   11篇
  2001年   8篇
  2000年   10篇
  1999年   17篇
  1998年   12篇
  1997年   12篇
  1996年   9篇
  1995年   16篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   1篇
  1987年   6篇
  1985年   4篇
  1984年   1篇
排序方式: 共有1087条查询结果,搜索用时 218 毫秒
61.
磁共振成像(MRI)系统是一种重要的医学影像诊断设备,它根据核磁共振原理对处于静磁场中的人体器官进行成像,具有清晰度高和任意层面成像等优点,在医学检查和诊断方面有着重要的作用,与低场MRI相比,高场MRI系统可提高质子的磁化率,增加图像的信噪比,缩短MRI信号采集时间,从而使脑功能成像的信号变化更为明显;但是较高的背景...  相似文献   
62.
Superparamagnetic nanoparticles functionalized with carboxymethyl dextran (CM-dextran) were synthesized by a two-step method. First, the magnetic nanoparticles (MNPs) coated with dextran (Mw ≈ 20000) were prepared by co-precipitation of Fe2+ and Fe3+ ions. Then, dextran on the surface of MNPs reacted with monochloroacetic acid (MCA) in alkaline condition. The influences of temperature and reactant concentration on the amount of -COOH on the surface of nanoparticles were systematically studied. The obtained MNPs coated with CM-dextran were stable over the entire range of pH and NaCl concentration. The MRI experiment indicated that the CM-dextran MNPs could potentially be used as MRI contrast agents for magnetic resonance molecular imaging.  相似文献   
63.
The purpose of this study was to demonstrate a simple and fast method for solving the time-dependent Bloch equations. First, the time-dependent Bloch equations were reduced to a homogeneous linear differential equation, and then a simple equation was derived to solve it using a matrix operation. The validity of this method was investigated by comparing with the analytical solutions in the case of constant radiofrequency irradiation. There was a good agreement between them, indicating the validity of this method. As a further example, this method was applied to the time-dependent Bloch equations in the two-pool exchange model for chemical exchange saturation transfer (CEST) or amide proton transfer (APT) magnetic resonance imaging (MRI), and the Z-spectra and asymmetry spectra were calculated from their solutions. They were also calculated using the fourth/fifth-order Runge-Kutta-Fehlberg (RKF) method for comparison. There was also a good agreement between them, and this method was much faster than the RKF method. In conclusion, this method will be useful for analyzing the complex CEST or APT contrast mechanism and/or investigating the optimal conditions for CEST or APT MRI.  相似文献   
64.
The analysis of information derived from magnetic resonance imaging (MRI) and spectroscopy (MRS) has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to investigate the efficiency of the combination of textural MRI features and MRS metabolite ratios by means of a pattern recognition system in the task of discriminating between meningiomas and metastatic brain tumors. The data set consisted of 40 brain MR image series and their corresponding spectral data obtained from patients with verified tumors. The pattern recognition system was designed employing the support vector machines classifier with radial basis function kernel; the system was evaluated using an external cross validation process to render results indicative of the generalization performance to “unknown” cases. The combination of MR textural and spectroscopic features resulted in 92.15% overall accuracy in discriminating meningiomas from metastatic brain tumors. The fusion of the information derived from MRI and MRS data might be helpful in providing clinicians a useful second opinion tool for accurate characterization of brain tumors.  相似文献   
65.

Purpose

To describe the paradoxical high signal intensity of hepatocellular carcinoma (HCC) in the hepatobiliary phase on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI).

Materials and Methods

A database search was performed to identify cases of HCC that showed unusual prolonged enhancement in the hepatobiliary phase of Gd-EOB-DTPA MRI. All patients received 3.0-T liver MRI including precontrast T1-weighted images, T2-weighted images and a post Gd-EOB-DTPA-enhanced dynamic study. The signal intensity of HCC was measured at pre-enhanced, arterial, portal, delayed and hepatobiliary phase using regions of interest. Radiologic and pathologic correlation was performed for the paradoxically prolonged enhancing portion of HCC in the hepatobiliary phase.

Results

Four patients (all male, age range 44-70; mean 57.5 years) were included in this study. All patients showed HCC lesions that were low signal intensity (SI) on T1-WI, high SI on T2-WI, enhanced in arterial phase, and washed-out in delayed phase. All cases showed paradoxically high SI in hepatobiliary phase, which was unusual for HCC. Pathologically, they were all diagnosed as well-differentiated HCC with prominent cytoplasm and a bile secreting appearance.

Conclusion

HCC may demonstrate the prolonged high signal intensity at the hepatobiliary phase on Gd-EOB-DTPA enhanced MRI. These HCCs tended to be highly differentiated and to have prominent bile secretion.  相似文献   
66.
Perceptions of sensation and pain in healthy people are believed to be the net result of sensory input and descending modulation from brainstem and cortical regions depending on emotional and cognitive factors. Here, the influence of attention on neural activity in the spinal cord during thermal sensory stimulation of the hand was investigated with functional magnetic resonance imaging by systematically varying the participants' attention focus across and within repeated studies. Attention states included (1) attention to the stimulus by rating the sensation and (2) attention away from the stimulus by performing various mental tasks of watching a movie and identifying characters, detecting the direction of coherently moving dots within a randomly moving visual field and answering mentally-challenging questions. Functional MRI results spanning the cervical spinal cord and brainstem consistently demonstrated that the attention state had a significant influence on the activity detected in the cervical spinal cord, as well as in brainstem regions involved with the descending analgesia system. These findings have important implications for the detection and study of pain, and improved characterization of the effects of injury or disease.  相似文献   
67.
Promising recent investigations have shown that breast malignancies exhibit restricted diffusion on diffusion-weighted imaging (DWI) and may be distinguished from normal tissue and benign lesions in the breast based on differences in apparent diffusion coefficient (ADC) values. In this study, we assessed the influence of intravoxel fat signal on breast diffusion measures by comparing ADC values obtained using a diffusion-weighted single shot fast spin-echo sequence with and without fat suppression. The influence of breast density on ADC measures was also evaluated. ADC values were calculated for both tumor and normal fibroglandular tissue in a group of 21 women with diagnosed breast cancer. There were systematic underestimations of ADC for both tumor and normal breast tissue due to intravoxel contribution from fat signal on non–fat-suppressed DWI. This ADC underestimation was more pronounced for normal tissue values (mean difference=40%) than for tumors (mean difference=27%, P<.001) and was worse in women with low breast tissue density vs. those with extremely dense breasts (P<.05 for both tumor and normal tissue). Tumor conspicuity measured by contrast-to-noise ratio was significantly higher on ADC maps created with fat suppression and was not significantly associated with breast density. In summary, robust fat suppression is important for accurate breast ADC measures and optimal lesion conspicuity on DWI.  相似文献   
68.
Ultra-high-field clinical MRI scanners (e.g., 7 T and above) are becoming increasingly prevalent and can potentially enhance diagnostic ability through higher contrast, resolution and/or sensitivity. Diffusion-weighted MRI is a highly valued component in today's radiological exam and may benefit from the enhanced signal-to-noise ratio provided by high field with the appropriate imaging strategy. The most common diffusion pulse sequence readout (echo-planar imaging (EPI)) has been widely employed for in vivo human 7 T diffusion tensor imaging (DTI). In this article, we present results of brain DTI at 7 T with two diffusion-weighted imaging pulse sequence readouts: echo-planar imaging (EPI-DTI) and turbo spin echo (TSE-DTI). Results indicate that analogous coverage, quality and resolution typical of lower field (2 mm) can be obtained by properly processed EPI-DTI at 7 T, and, with some reduction in efficiency and sharpness, TSE-DTI at 7 T. Furthermore, 7 T TSE-DTI shows promise in obtaining higher-resolution results in targeted acquisitions of specific brain areas.  相似文献   
69.
Iron oxide nanocrystals are of considerable interest in nanoscience and nanotechnology because of their nanoscale dimensions, nontoxic nature, and superior magnetic properties. Colloidal solutions of magnetic nanoparticles (ferrofluids) with a high magnetite content are highly desirable for most molecular imaging applications. In this paper, we present a method for in situ coating of superparamagnetic iron oxide (SPIO) with chitosan in order to increase the content of magnetite. Iron chloride salts (Fe3+ and Fe2+) were directly coprecipitated inside a porous matrix of chitosan by Co-60 γ-ray irradiation in an aqueous solution of acetic acid. Following sonication, iron oxide nanoparticles were formed inside the chitosan matrix at a pH value of 9.5 and a temperature of 50 °C. The [Fe3+]:[Fe2+]:[NH4OH] molar ratio was 1.6:1:15.8. The final ferrofluid was formed with a pH adjustment to approximately 2.0/3.0, alongside with the addition of mannitol and lactic acid. We subsequently characterized the particle size, the zeta potential, the iron concentration, the magnetic contrast, and the cellular uptake of our ferrofluid. Results showed a z-average diameter of 87.2 nm, a polydispersity index (PDI) of 0.251, a zeta potential of 47.9 mV, and an iron concentration of 10.4 mg Fe/mL. The MRI parameters included an R1 value of 22.0 mM−1 s−1, an R2 value of 202.6 mM−1 s−1, and a R2/R1 ratio of 9.2. An uptake of the ferrofluid by mouse macrophages was observed. Altogether, our data show that Co-60 γ-ray radiation on solid chitosan may improve chitosan coating of iron oxide nanoparticles and tackle its aqueous solubility at pH 7. Additionally, our methodology allowed to obtain a ferrofluid with a higher content of magnetite and a fairly unimodal distribution of monodisperse clusters. Finally, MRI and cell experiments demonstrated the potential usefulness of this product as a potential MRI contrast agent that might be used for cell tracking.  相似文献   
70.
DPA‐713 is the lead compound of a recently reported pyrazolo[1,5‐a]pyrimidineacetamide series, targeting the translocator protein (TSPO 18 kDa), and as such, this structure, as well as closely related derivatives, have been already successfully used as positron emission tomography radioligands. On the basis of the pharmacological core of this ligands series, a new magnetic resonance imaging probe, coded DPA‐C6‐(Gd)DOTAMA was designed and successfully synthesized in six steps and 13% overall yield from DPA‐713. The Gd‐DOTA monoamide cage (DOTA = 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid) represents the magnetic resonance imaging reporter, which is spaced from the phenylpyrazolo[1,5‐a]pyrimidineacetamide moiety (DPA‐713 motif) by a six carbon‐atom chain. DPA‐C6‐(Gd)DOTAMA relaxometric characterization showed the typical behavior of a small‐sized molecule (relaxivity value: 6.02 mM?1 s?1 at 20 MHz). The good hydrophilicity of the metal chelate makes DPA‐C6‐(Gd)DOTAMA soluble in water, affecting thus its biodistribution with respect to the parent lipophilic DPA‐713 molecule. For this reason, it was deemed of interest to load the probe to a large carrier in order to increase its residence lifetime in blood. Whereas DPA‐C6‐(Gd)DOTAMA binds to serum albumin with a low affinity constant, it can be entrapped into liposomes (both in the membrane and in the inner aqueous cavity). The stability of the supramolecular adduct formed by the Gd‐complex and liposomes was assessed by a competition test with albumin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号