首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2627篇
  免费   434篇
  国内免费   394篇
化学   1517篇
晶体学   65篇
力学   391篇
综合类   51篇
数学   85篇
物理学   1346篇
  2024年   11篇
  2023年   35篇
  2022年   157篇
  2021年   174篇
  2020年   132篇
  2019年   80篇
  2018年   71篇
  2017年   129篇
  2016年   126篇
  2015年   125篇
  2014年   164篇
  2013年   207篇
  2012年   177篇
  2011年   212篇
  2010年   134篇
  2009年   164篇
  2008年   139篇
  2007年   160篇
  2006年   139篇
  2005年   116篇
  2004年   105篇
  2003年   95篇
  2002年   110篇
  2001年   63篇
  2000年   83篇
  1999年   63篇
  1998年   55篇
  1997年   36篇
  1996年   35篇
  1995年   24篇
  1994年   26篇
  1993年   18篇
  1992年   19篇
  1991年   16篇
  1990年   14篇
  1989年   6篇
  1988年   9篇
  1987年   7篇
  1986年   3篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1957年   1篇
排序方式: 共有3455条查询结果,搜索用时 15 毫秒
131.
Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.  相似文献   
132.
High-grade epithelial ovarian cancer is a fatal disease in women frequently associated with drug resistance and poor outcomes. We previously demonstrated that a marine-derived compound MalforminA1 (MA1) was cytotoxic for the breast cancer cell line MCF-7. In this study, we aimed to examine the effect of MA1 on human ovarian cancer cells. The potential cytotoxicity of MA1was tested on cisplatin-sensitive (A2780S) and cisplatin-resistant (A2780CP) ovarian cancer cell lines using AlamarBlue assay, Hoechst dye, flow cytometry, Western blot, and RT-qPCR. MA1 had higher cytotoxic activity on A2780S (IC50 = 0.23 µM) and A2780CP (IC50 = 0.34 µM) cell lines when compared to cisplatin (IC50 = 31.4 µM and 76.9 µM, respectively). Flow cytometry analysis confirmed the cytotoxic effect of MA1. The synergistic effect of the two drugs was obvious, since only 13% of A2780S and 7% of A2780CP cells remained alive after 24 h of treatment with both MA1 and cisplatin. Moreover, we examined the expression of bcl2, p53, caspase3/9 genes at RNA and protein levels using RT-qPCR and Western blot, respectively, to figure out the cell death mechanism induced by MA1. A significant down-regulation in bcl2 and p53 genes was observed in treated cells compared to non-treated cells (p < 0.05), suggesting that MA1 may not follow the canonical pathway to induce apoptosis in ovarian cancer cell lines. MalforminA1 showed promising anticancer activity by inducing cytotoxicity in cisplatin-sensitive and cisplatin-resistant cancer cell lines. Interestingly, a synergistic effect was observed when MA1 was combined with cisplatin, leading to it overcoming its resistance to cisplatin.  相似文献   
133.
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.  相似文献   
134.
Following a similar approach on carvacrol-based derivatives, we investigated the synthesis and the microbiological screening against eight strains of H. pylori, and the cytotoxic activity against human gastric adenocarcinoma (AGS) cells of a new series of ether compounds based on the structure of thymol. Structural analysis comprehended elemental analysis and 1H/13C/19F NMR spectra. The analysis of structure–activity relationships within this molecular library of 38 structurally-related compounds reported that some chemical modifications of the OH group of thymol led to broad-spectrum growth inhibition on all isolates. Preferred substitutions were benzyl groups compared to alkyl chains, and the specific presence of functional groups at para position of the benzyl moiety such as 4-CN and 4-Ph endowed the most anti-H. pylori activity toward all the strains with minimum inhibitory concentration (MIC) values up to 4 µg/mL. Poly-substitution on the benzyl ring was not essential. Moreover, several compounds characterized by the lowest minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values against H. pylori were also tested in order to verify a cytotoxic effect against AGS cells with respect to 5-fluorouracil and carvacrol. Three derivatives can be considered as new lead compounds alternative to current therapy to manage H. pylori infection, preventing the occurrence of severe gastric diseases. The present work confirms the possibility to use natural compounds as templates for the medicinal semi-synthesis.  相似文献   
135.
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.  相似文献   
136.
Anti-virulence strategy is currently considered a promising approach to overcome the global threat of the antibiotic resistance. Among different bacterial virulence factors, the biofilm formation is recognized as one of the most relevant. Considering the high and growing percentage of multi-drug resistant infections that are biofilm-mediated, new therapeutic agents capable of counteracting the formation of biofilms are urgently required. In this scenario, a new series of 18 thiazole derivatives was efficiently synthesized and evaluated for its ability to inhibit biofilm formation against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 25923 and S. aureus ATCC 6538 and the Gram-negative strain Pseudomonas aeruginosa ATCC 15442. Most of the new compounds showed a marked selectivity against the Gram-positive strains. Remarkably, five compounds exhibited BIC50 values against S. aureus ATCC 25923 ranging from 1.0 to 9.1 µM. The new compounds, affecting the biofilm formation without any interference on microbial growth, can be considered promising lead compounds for the development of a new class of anti-virulence agents.  相似文献   
137.
Nasopharyngeal carcinoma (NPC) frequently occurs in Southern China. The main treatments of NPC are chemotherapy and radiotherapy. However, chemo-resistance arises as a big obstacle in treating NPC. Therefore, there is a great need to develop new compounds that could reverse tumor drug resistance. In this study, eight matrine derivatives containing thiophene group were designed and synthesized. Structures of these 8 compounds were characterized by 1H-NMR, 13C-NMR, and high-resolution mass spectrometer (HRMS). The cytotoxicity and preliminary synergistic effects of these 8 compounds were detected against nasopharyngeal carcinoma (NPC) cells and cisplatin-resistant NPC cells (CNE2/CDDP), respectively. Furthermore, the in vivo and in vitro tumor resistance reversal effects of compound 3f were evaluated. Moreover, docking studies were performed in Bclw (2Y6W). The results displayed that compound 3f showed synergistic inhibitory effects with cisplatin against CNE2/CDDP cells proliferation via apoptosis induction. Docking results revealed that compound 3f may exert its effects via inhibiting anti-apoptosis protein Bcl-w.  相似文献   
138.
Olive leaf spot (OLS) caused by Fusicladium oleagineum is mainly controlled using copper fungicides. However, the replacement of copper-based products with eco-friendly alternatives is a priority. The use of plant resistance-inducers (PRIs) or biological control agents (BCAs) could contribute in this direction. In this study we investigated the potential use of three PRIs (laminarin, acibenzolar-S-methyl, harpin) and a BCA (Bacillus amyloliquefaciens FZB24) for the management of OLS. The tested products provided control efficacy higher than 68%. In most cases, dual applications provided higher (p < 0.05) control efficacies compared to that achieved by single applications. The highest control efficacy of 100% was achieved by laminarin. Expression analysis of the selected genes by RT-qPCR revealed different kinetics of induction. In laminarin-treated plants, for most of the tested genes a higher induction rate (p < 0.05) was observed at 3 days post application. Pal, Lox, Cuao and Mpol were the genes with the higher inductions in laminarin-treated and artificially inoculated plants. The results of this study are expected to contribute towards a better understanding of PRIs in olive culture and the optimization of OLS control, while they provide evidence for potential contributions in the reduction of copper accumulation in the environment.  相似文献   
139.
无机纳米颗粒在塑料抗紫外的研究中一直备受关注,主要介绍了四种(TiO2、ZnO、SiO2、CeO2)典型的无机纳米颗粒在该领域的应用。首先归纳了其既能吸收又能反射或散射紫外线的抗紫外机理;其次,分别论述了不同无机纳米颗粒适用的紫外光波长范围,以在塑料中的添加方法和应用特点为主线,重点介绍了国内外四种无机纳米颗粒在塑料抗紫外性能中的研究现状和进展;最后,将四种无机纳米颗粒在塑料抗紫外性能中的应用特点进行了对比,提出了应用过程中存在的分散和相容性差等问题,以期为无机纳米颗粒的深入应用和发展提供一定的参考。  相似文献   
140.
《中国化学快报》2021,32(9):2877-2881
Tumor drug resistance and systemic side effects of chemotherapeutic drugs are the main reasons for the failure of cancer treatment. In recent years, it was found that some natural active ingredients can reverse MDR and regulate body immunity to enhance the efficacy and reduce toxicity of chemotherapeutic drugs. In this paper, a new nanosuspensions, HCPT and QUR hybrid nanosuspensions (HQ-NPs), was prepared by the microprecipitation-high pressure homogenization method to reverse tumor drug resistance, reduce toxicity, and increase therapeutic efficacy. The in vitro investigation results showed that HQ-NPs had a unique shape (particle size was about 216.3 ± 5.9 nm), changed crystalline, and different dissolution rates compared with HCPT-NPs and QUR-NPs, which is attributed to the strong intermolecular forces between HCPT and QUR as indicated by the results of the molecule dock. It was verified that the HQ-NPs could double the retention of HCPT in cells and enhance the cytotoxicity to A549/PTX cells in vitro tests compared with HCPT-NPs. We also found that HQ-NPs can significantly enhance the accumulation of HCPT in tumor sites, improve the antitumor activity of HCPT, and protect the immune organs and other normal tissues (P < 0.01), compared with HCPT-NPs. Therefore, hybrid nanosuspensions can offer promising potential as the drug delivery system for HCPT and QUR to increase the therapeutic efficacy and reduce the toxicity of HCPT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号