首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   16篇
  国内免费   27篇
化学   2篇
力学   1篇
综合类   1篇
数学   11篇
物理学   445篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2020年   9篇
  2019年   8篇
  2018年   1篇
  2017年   1篇
  2016年   8篇
  2015年   9篇
  2014年   5篇
  2013年   19篇
  2012年   13篇
  2011年   23篇
  2010年   18篇
  2009年   39篇
  2008年   28篇
  2007年   21篇
  2006年   27篇
  2005年   36篇
  2004年   38篇
  2003年   29篇
  2002年   36篇
  2001年   16篇
  2000年   18篇
  1999年   14篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有460条查询结果,搜索用时 15 毫秒
321.
Composite rigging systems, involving membranes that meet on strings that meet on monopoles, arise naturally by the Kibble mechanism as topological defects in field theories involving spontaneous symmetry breaking. Such systems will tend to freeze out into static lattice type configurations with energy contribution ultimately be provided by the membranes. It has been suggested by Bucher and Spergel that on scales large compared with the relevant (interstellar separation) distance characterizing the relevant mesh length, such a system may behave as a rigidity-stabilized solid, having an approximately isotropic stress energy tensor with negative pressure, as given by a polytropic index γ = w+1 = 1/3. It has recently been shown that such a system can be rigid enough to be stable if the number of membranes meeting at a junction is even (though not if it is odd). Using as examples an approximaely O(3) symmetric scalar field model that can provide an “8-color” (body-centered) cubic lattice, and an approximate U(1)× U(1) model offering a disordered “5-color” lattice, it is argued that such a mechanism can account naturally for the observed dark energy dominance of the universe, without ad hoc assumptions, other than that the relevant symmetry breaking phase transition should have occurred somewhere about the Kev energy range.  相似文献   
322.
P C Vaidya  L K Patel 《Pramana》1986,27(1-2):63-72
Spatially homogeneous space-times of Bianchi type IX are considered. A general scheme for the derivation of exact solutions of Einstein’s equations corresponding to perfect fluid plus pure radiation fields is outlined. Some simple rotating Bianchi type IX cosmological models are presented. The details of these solutions are also discussed. The authors felicitate Prof. D S Kothari on his eightieth birthday and dedicate this paper to him on this occasion.  相似文献   
323.
In this article, we present a numerical scheme for the 3‐D system of self‐gravitating fluid dynamics in the collisional case as well as in the non‐collisional case. Consistency in the sense of distributions is proved in 1‐D and in absence of pressure. In the other cases consistency is proved under the numerical assumptions of boundedness of the velocity field in the CFL condition and of boundedness of the gradient of the gravitation potential. In 2‐D and 3‐D, concentrations of matter in strings and points can cause a theoretical difficulty in the pressureless case although one observes that the scheme still works. The initial data are L functions in velocity and L1 functions in density. Applications are given to numerical simulations of the role of dark matter and gravitational collapse in cosmology as well as Jeans theory. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   
324.
We construct a dark energy model with a phantom scalar field, a standard scalar field, and a polynomial potential inspired by string field theory. We find a two-parameter set of exact solutions of the Friedmann equations. We find a potential satisfying the conditions obtained from the string theory and such that at large times, some of the exact solutions correspond to the state parameter wDE > −1 while the others correspond to wDE < −1. We demonstrate that the superpotential method is very effective for seeking new exact solutions. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 155, No. 1, pp. 47–61, April, 2008.  相似文献   
325.
Field theories that violate the null energy condition (NEC) are of interest both for the solution of the cosmological singularity problem and for models of cosmological dark energy with the equation of state parameter w < −1. We consider two recently proposed models that violate the NEC. The ghost condensate model requires higher-derivative terms in the action, and this leads to a heavy ghost field and energy unbounded from below. We estimate the rates of particle decay and discuss possible mass limitations to protect the stability of matter in the ghost condensate model. The nonlocal stringy model that arises from a cubic string field theory and exhibits a phantom behavior also leads to energy unbounded from below. In this case, the energy spectrum is continuous, and there are no particle-like excitations. This model admits a natural UV completion because it comes from superstring theory. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 155, No. 1, pp. 3–12, April, 2008.  相似文献   
326.
We develop a method for constructing exact cosmological solutions of the Einstein equations based on representing them as a second-order linear differential equation. In particular, the method allows using an arbitrary known solution to construct a more general solution parameterized by a set of 3N constants, where N is an arbitrary natural number. The large number of free parameters may prove useful for constructing a theoretical model that agrees satisfactorily with the results of astronomical observations. Cosmological solutions on the Randall-Sundrum brane have similar properties. We show that three-parameter solutions in the general case already exhibit inflationary regimes. In contrast to previously studied two-parameter solutions, these three-parameter solutions can describe an exit from inflation without a fine tuning of the parameters and also several consecutive inflationary regimes. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 158, No. 2, pp. 312–320, February, 2009.  相似文献   
327.
We review the paradigm of quintom cosmology. This scenario is motivated by the observational indications that the equation-of-state of dark energy across the cosmological constant boundary is mildly favored, although the data are still far from being conclusive. As a theoretical setup we introduce a no-go theorem existing in quintom cosmology, and based on it we discuss the conditions for the equation-of-state of dark energy realizing the quintom scenario. The simplest quintom model can be achieved by introducing two scalar fields with one being quintessence and the other phantom. Based on the double-field quintom model we perform a detailed analysis of dark energy perturbations and we discuss their effects on current observations. This type of scenario usually suffers from a manifest problem due to the existence of a ghost degree-of-freedom, and thus we review various alternative realizations of the quintom paradigm. The developments in particle physics and string theory provide potential clues indicating that a quintom scenario may be obtained from scalar systems with higher derivative terms, as well as from non-scalar systems. Additionally, we construct a quintom realization in the framework of braneworld cosmology, where the cosmic acceleration and the phantom divide crossing result from the combined effects of the field evolution on the brane and the competition between four- and five-dimensional gravity. Finally, we study the outsets and fates of a universe in quintom cosmology. In a scenario with null energy condition violation one may obtain a bouncing solution at early times and therefore avoid the Big Bang singularity. Furthermore, if this occurs periodically, we obtain a realization of an oscillating universe. Lastly, we comment on several open issues in quintom cosmology and their connection to future investigations.  相似文献   
328.
A five dimensional Kaluza-Klein inflationary universe is investigated in the presence of massless scalar field with a flat potential. To get an inflationary universe a flat region in which potential V is constant is considered. Some physical and kinematical properties of the universe are also discussed.  相似文献   
329.
Several examples are known where quantum gravity effects resolve the classical big bang singularity by a bounce. The most detailed analysis has probably occurred for loop quantum cosmology of isotropic models sourced by a free, massless scalar. Once a bounce has been realized under fairly general conditions, the central questions are how strongly quantum it behaves, what influence quantum effects can have on its appearance, and what quantum space-time beyond the bounce may look like. This, then, has to be taken into account for effective equations which describe the evolution properly and can be used for further phenomenological investigations. Here, we provide the first analysis with interacting matter with new effective equations valid for weak self-interactions or small masses. They differ from the free scalar equations by crucial terms and have an important influence on the bounce and the space-time around it. Especially the role of squeezed states, which have often been overlooked in this context, is highlighted. The presence of a bounce is proven for uncorrelated states, but as squeezing is a dynamical property and may change in time, further work is required for a general conclusion.  相似文献   
330.
We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the universe transits to an isotropic flat FRW universe accommodating the present acceleration. A class of new cosmological solutions is obtained for an anisotropic universe in case an initial anisotropy exists which is bigger than the value determined by the parameter of the kinetic part of the field. Later, an autonomous system of equations for an axially symmetric Bianchi-I universe with phantom field in an exponential potential is studied. We discuss the stability of the cosmological solutions.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号