首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   49篇
  国内免费   83篇
化学   568篇
力学   29篇
综合类   24篇
数学   54篇
物理学   174篇
  2025年   1篇
  2024年   23篇
  2023年   25篇
  2022年   82篇
  2021年   75篇
  2020年   56篇
  2019年   42篇
  2018年   15篇
  2017年   28篇
  2016年   29篇
  2015年   31篇
  2014年   45篇
  2013年   53篇
  2012年   37篇
  2011年   34篇
  2010年   34篇
  2009年   30篇
  2008年   28篇
  2007年   19篇
  2006年   23篇
  2005年   23篇
  2004年   21篇
  2003年   15篇
  2002年   15篇
  2001年   11篇
  2000年   10篇
  1999年   3篇
  1998年   11篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1971年   1篇
排序方式: 共有849条查询结果,搜索用时 0 毫秒
61.
To date, more than 30 antibodies have been approved worldwide for therapeutic use. While the monoclonal antibody market is rapidly growing, the clinical use of therapeutic antibodies is mostly limited to treatment of cancers and immunological disorders. Moreover, antibodies against only five targets (TNF-α, HER2, CD20, EGFR, and VEGF) account for more than 80 percent of the worldwide market of therapeutic antibodies. The shortage of novel, clinically proven targets has resulted in the development of many distinct therapeutic antibodies against a small number of proven targets, based on the premise that different antibody molecules against the same target antigen have distinct biological and clinical effects from one another. For example, four antibodies against TNF-α have been approved by the FDA -- infliximab, adalimumab, golimumab, and certolizumab pegol -- with many more in clinical and preclinical development. The situation is similar for HER2, CD20, EGFR, and VEGF, each having one or more approved antibodies and many more under development. This review discusses the different binding characteristics, mechanisms of action, and biological and clinical activities of multiple monoclonal antibodies against TNF-α, HER-2, CD20, and EGFR and provides insights into the development of therapeutic antibodies.  相似文献   
62.
63.
肿瘤组织的微酸性环境为肿瘤准确诊断和有效治疗提供了新思路。pH敏感性金属配合物因具有较高的物理化学稳定性,突出的光谱特性和肿瘤靶向性等性质,引起高度关注。本文综述了这种肿瘤酸性微环境的产生机制以及近年来对这种酸性微环境敏感的铱、钌、铂配合物作为肿瘤成像和治疗试剂的研究进展。  相似文献   
64.
    
A tumor‐selective drug delivery nanogel with redox‐responsive size swelling and co‐instantaneous drug release is developed. The nanogel is formed by poly(ethylene glycol) diglycidyl ether and cystamine double crosslinked hyaluronic acid (HA). The disulfide bond in cystamine (Cys) is in charge of the responsiveness, while the compact polymer network turns the nanogel a capsule for effective drug loading. The tumor targeting is achieved by the known HA‐receptor mediated endocytosis. The responsive swelling of this nanogel and co‐instantaneous drug releases happen with the cleavage of the disulfide bond following tumor targeting and cell endocytosis, which is triggered by massive glutathione (GSH) in the cytoplasm of tumor cells. The highly selective nanogel uptake by tumor cells is directly demonstrated by fluorescence microscopy and flow cytometry. The dynamic light scattering and fluorescent spectrum reveal the GSH‐triggered size change and simultaneous drug release, which results in higher tumor cytotoxicity and over fourfold efficacy against tumor cells compared with normal cells. These results indicate that these HA‐PEG‐Cys‐DOX nanogels, with performance of selective drug delivery, intracellular reconstruction, and responsive drug release, are promising platforms for better therapeutic effects in cancer treatment.  相似文献   
65.
66.
67.
    
Photothermal therapy (PTT) is an emerging noninvasive and precise localized therapeutic modality; however, it is deeply limited by its poor tumor accumulation, inadequate photothermal conversion efficiency, and the thermoresistance of cancer cells. Aimed at these shortcomings, tumor‐targeting nanoparticles (iRGD‐W18O49‐17AAG) comprising carboxyl‐group‐functionalized W18O49 nanoparticles, integrin‐targeting peptide iRGD, and HSP90‐inhibitor 17AAG are developed. The W18O49 nanoparticles act as excellent PTT carriers and computed tomography (CT) imaging contrast agents. The ring type polypeptide iRGD promotes the accumulation of nanoparticles in the tumour and further penetration into cancer cells. The introduction of 17AAG can inhibit the heat‐shock response and overcome the thermoresistance, thus increasing the curative effect of PTT and reducing the chance of tumor recurrence. The W18O49 nanoparticles can also be used to monitor and guide the phototherapeutic through CT and near‐infrared fluorescence imaging after modification with Cy5.5. In addition, superior biosafety is also indicated in both preliminary in vitro and in vivo assessments. The potential of iRGD‐W18O49‐17AAG in tumor targeting, dual modality imaging‐guided and remarkable enhanced PTT of gastric cancer with ignorable side effect both in vitro and in vivo, which may be further applied in clinic, is highlighted.  相似文献   
68.
    
The development of early and personalized diagnostic protocol with rapid response and high accuracy is considered the most promising avenue to advance point-of-care testing for tumor diagnosis and therapy. Given the growing awareness of the limitations of conventional tissue biopsy for gathering tumor information, considerable interest has recently been aroused in liquid biopsy. Among a myriad of analytical approaches proposed for liquid biopsy, microfluidics-based separation and purification techniques possess merits of high throughput, low samples consumption, high flexibility, low cost, high sensitivity, automation capability and enhanced spatio-temporal control. These characteristics endow microfluidics to serve as an emerging and promising tool in tumor diagnosis and prognosis by identifying specific circulating tumor biomarkers. In this review, we will put our focus on three key categories of circulating tumor biomarkers, namely, circulating tumor cells (CTCs), circulating exosomes, and circulating nucleic acids (cNAs), and discuss the significant roles of microfluidics in the separation and analysis of circulating tumor biomarkers. Recent advances in microfluidic separation and analysis of CTCs, exosomes, and cNAs will be highlighted and tabulated. Finally, the current challenges and future niches of using microfluidic techniques in the separation and analysis of circulating tumor biomarkers will be discussed.  相似文献   
69.
    
Even though the diagnostic and prognostic value of circulating tumor cells (CTCs) has been demonstrated, their clinical utility and widespread adoption have been limited. Herein, we describe a new device, size‐dictated immunocapture chip (SDI‐Chip), for efficient, sensitive, and spatially resolved capture and detection of CTCs. SDI‐Chip enables selective, frequent, and extended interaction of CTCs with hydrodynamically optimized immunocoated micropillar surfaces. CTCs with different antigen expression levels can be efficiently captured and spatially resolved around the micropillars. Capture efficiency greater than 92 % with a purity of 82 % was achieved with blood samples. CTCs were detected in non‐metastasis colorectal (CRC) patients, while none was detected from healthy volunteers. We believe that SDI‐Chip will facilitate the transition of tumor diagnosis from anatomical pathology to molecular pathology in localized CRC patients.  相似文献   
70.
    
The fabrication of nanodiamond (ND)‐based drug carriers for tumor‐targeted drug delivery is described. The ND clusters with an average size of 52.84 nm are fabricated using a simple fluidic device combined with a precipitation method and then conjugated with folic acid (FA) and doxorubicin (Dox) via carbodiimide chemistry to obtain FA/Dox‐modified ND (FA/Dox‐ND) clusters. Cell culture experiments revealed that KB (folate receptor‐positive) cells are preferentially ablated by FA/Dox‐ND clusters compared to A549 (folate receptor‐negative) cells. In vivo results revealed that FA/Dox‐ND clusters are specifically accumulated in tumor tissues after intravenous injection into tumor‐bearing mice, effectively reducing the volume of tumor. Based on these results, this study suggests that FA/Dox‐ND clusters can be a good candidate as tumor‐targeted nanovehicles for delivery of antitumor drug.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号