首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1120篇
  免费   115篇
  国内免费   88篇
化学   598篇
晶体学   7篇
力学   324篇
综合类   11篇
数学   78篇
物理学   305篇
  2023年   2篇
  2022年   23篇
  2021年   29篇
  2020年   31篇
  2019年   17篇
  2018年   26篇
  2017年   28篇
  2016年   38篇
  2015年   34篇
  2014年   49篇
  2013年   60篇
  2012年   53篇
  2011年   58篇
  2010年   51篇
  2009年   75篇
  2008年   85篇
  2007年   69篇
  2006年   81篇
  2005年   49篇
  2004年   59篇
  2003年   45篇
  2002年   38篇
  2001年   20篇
  2000年   38篇
  1999年   30篇
  1998年   28篇
  1997年   24篇
  1996年   24篇
  1995年   27篇
  1994年   31篇
  1993年   37篇
  1992年   12篇
  1991年   7篇
  1990年   4篇
  1989年   8篇
  1988年   9篇
  1987年   10篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1959年   1篇
排序方式: 共有1323条查询结果,搜索用时 15 毫秒
101.
102.
Gas Flow in Porous Media With Klinkenberg Effects   总被引:10,自引:0,他引:10  
Gas flow in porous media differs from liquid flow because of the large gas compressibility and pressure-dependent effective permeability. The latter effect, named after Klinkenberg, may have significant impact on gas flow behavior, especially in low permeability media, but it has been ignored in most of the previous studies because of the mathematical difficulty in handling the additional nonlinear term in the gas flow governing equation. This paper presents a set of new analytical solutions developed for analyzing steady-state and transient gas flow through porous media including Klinkenberg effects. The analytical solutions are obtained using a new form of gas flow governing equation that incorporates the Klinkenberg effect. Additional analytical solutions for one-, two- and three-dimensional gas flow in porous media could be readily derived by the following solution procedures in this paper. Furthermore, the validity of the conventional assumption used for linearizing the gas flow equation has been examined. A generally applicable procedure has been developed for accurate evaluation of the analytical solutions which use a linearized diffusivity for transient gas flow. As application examples, the new analytical solutions have been used to verify numerical solutions, and to design new laboratory and field testing techniques to determine the Klinkenberg parameters. The proposed laboratory analysis method is also used to analyze data from steady-state flow tests of three core plugs from The Geysers geothermal field. We show that this new approach and the traditional method of Klinkenberg yield similar results of Klinkenberg constants for the laboratory tests; however, the new method allows one to analyze data from both transient and steady-state tests in various flow geometries.  相似文献   
103.
Soilbentonite slurry walls are designed to inhibit the subsurface movement of contaminants from hazardous waste sites. Although it is generally accepted that high concentrations of organic compounds will adversely affect soilbentonite slurry walls and clay liners, previous research investigating the effects of NAPLs on the conductivity of clay wall materials has been inconclusive. In this study the effects of various organics (benzene, aniline, trichloroethylene, ethylene dichloride, methylene chloride) on the effective conductivity of a typical soilbentonite slurry wall material were studied under two effective stress conditions, 200 and 52kPa. The hydraulic conductivity for the soilbentonite material permeated with water averaged 1.52×10-8cms-1. Compared to water, there was little change in conductivity when the sample was permeated with a solution containing a NAPL compound at its solubility limit, except for aniline. However, there was a one to two order of magnitude decrease in conductivity when the sample was permeated with a pure NAPL for all NAPLs tested. When the soilbentonite material was permeated with a water/NAPL/water/NAPL sequence, the conductivity decreased one to two orders of magnitude when a NAPL was introduced following water; however, when water was reintroduced after the NAPL, the conductivity increased to the initial hydraulic conductivity. The conductivity again decreased one to two orders of magnitude when the NAPL was reintroduced. This trend occurred for all NAPLs tested, and the fluid properties of the NAPL compounds alone did not account for the decrease in conductivity compared to water.  相似文献   
104.
Most rate-independent constitutive relations for granular materials are based on the existence of a regular flow rule. This assumption states that once the mechanical state of a material point belongs to the yield surface, then the direction of the plastic strains is independent of the loading direction. In this paper, the notion of a regular flow rule is shown to exist only for two-dimensional and axisymmetric loading conditions. By considering our incrementally nonlinear constitutive model, it is established that this notion disappears as soon as more general loading conditions are applied, as also predicted from discrete element simulations. Moreover, a sound micro-mechanical interpretation of the vanishing of a regular flow rule in three-dimensional loading conditions is given from a multi-scale perspective using the micro-directional model. This model highlights the great influence of the loading history on the shape of the plastic Gudehus response-envelope.  相似文献   
105.
The behavior of the interface in a two-phase immiscible fluid flow in a randomly heterogeneous porous medium is investigated. The medium is described by the permeability distribution which represents a random field with given statistical characteristics. When the approach proposed is used, it turns out to be possible to relate the statistical characteristics of the interface with the statistical characteristics of the permeability field and the properties of the phases. On the basis of this relation an important characteristic of the two-phase flow, namely, the average saturation distribution in the neighborhood of the interface, can be calculated.  相似文献   
106.
We present a spatial renormalization group algorithm to handle immiscibletwo-phase flow in heterogeneous porous media. We call this algorithmFRACTAM-R, where FRACTAM is an acronym for Fast Renormalization Algorithmfor Correlated Transport in Anisotropic Media, and the R stands for relativepermeability. Originally, FRACTAM was an approximate iterative process thatreplaces the L × L lattice of grid blocks, representing the reservoir,by a (L/2) × (L/2) one. In fact, FRACTAM replaces the original L× L lattice by a hierarchical (fractal) lattice, in such a way thatfinding the solution of the two-phase flow equations becomes trivial. Thistriviality translates in practice into computer efficiency. For N=L ×L grid blocks we find that the computer time necessary to calculatefractional flow F(t) and pressure P(t) as a function of time scales as N1.7 for FRACTAM-R. This should be contrasted with thecomputational time of a conventional grid simulator N2.3. The solution we find in this way is an accurateapproximation to the direct solution of the original problem.  相似文献   
107.
This paper presents a new method for scaling up multiphase flow properties which properly accounts for boundary conditions on the upscaled cell. The scale-up proposed does not require the simulation of a complete finely-gridded model, instead it calls for assumptions allowing the calculation of the boundary conditions related to each block being scaled up. To upscale a coarse block, we have to assume or determine the proper boundary conditions for that coarse block. To date, most scale-up methods have been based on the assumption of steady-state flow associated with uniform fractional flows over all the boundaries of the coarse block. However, such an assumption is not strictly valid when we consider heterogeneities. The concept of injection tubes is introduced: these are hypothetical streamtubes connecting the injection wellbore to all inlet faces of the fine grid cells constituting the block to be scaled up. Injection tubes allow the capturing of the fine-scale flow behavior of a finely-gridded model at the inlet face of the coarse block without having to simulate that fine grid. We describe how to scale up an entire finely-gridded model sequentially using injection tubes to determine the boundary conditions for two-phase flow. This new scale-up method is able to capture almost exactly the fine-scale two-phase flow behavior, such as saturation distributions, inside each isolated coarse-grid domain. Further, the resultant scaled-up relative permeabilities reproduce accurately the spatially-averaged performance of the finely-gridded model throughout the simulation period. The method has been shown to be applicable not only to viscous-dominated flow but also to flow affected by gravity for reasonable viscous-to-gravity ratios.  相似文献   
108.
Various versions of representations of the percolation Reynolds number for porous media with isotropic and anisotropic flow properties are considered. The formulas are derived and the variants are analyzed with reference to model porous media with a periodic microstructure formed by systems of capillaries and packings consisting of spheres of constant diameter (ideal and fictitious porous media, respectively). A generalization of the Kozeny formula is given for determining the capillary diameter in an ideal porous medium equivalent to a fictitious medium with respect to permeability and porosity and it is shown that the capillary diameter is nonuniquely determined. Relations for recalculating values of the Reynolds number determined by means of formulas proposed earlier are given and it is shown that taking the microstructure of porous media into account, as proposed in [1, 2], makes it possible to explain the large scatter of the numerical values of the Reynolds number in processing the experimental data.  相似文献   
109.
The macroscopic permeability of random lattices has been studied when the permeability of each link is a power law of its length with an exponent . When they are sufficiently long, the link lengths are shown to follow exponential laws which depend on the density. The macroscopic permeability is studied as a function of ; it is compared to a modified effective medium theory (EMT).*Author for correspondence: e-mail: adler@ipgp.jussieu.fr**e-mail: le_chic@mail.ru  相似文献   
110.
The main focus of this work is to model macroscopically the effects of partial saturation upon the permeability of dual scale fibrous media made of fiber bundles when a Newtonian viscous fluid impregnates it. A new phenomenological model is proposed to explain the discrepancies between experimental pressure results and analytical predictions based on Darcy's law. This model incorporates the essential features of relative permeability but without the necessity of measuring saturation of the liquid for its prediction. The model is very relevant for the small scale industrial systems where a liquid is forced to flow through a fibrous porous medium. It requires four parameters. Two of them are the two permeability values based on the two length scales. One length scale is of the order of magnitude of the individual fiber radius and corresponds to the permeability of the completely staurated medium, the other is of the order of magnitude of the distance between the fiber bundles and corresponds to the permeability of the partially saturated medium. The other two parameters are the lengths of the two partially saturated regions of the flow domain. The two lengths of the partially saturated region and the permeability of the fully saturated flow domain can be directly measured from the experiments. The excellent agreement between the model and the experimental results of inlet pressure profile with respect to time suggests that this model may be used to describe the variation of the permeability behind a moving front in such porous media for correct pressure prediction. It may also be used to characterize the fibrous medium by determining the two different permeabilities and the relative importance of the unsaturated portion of the flow domain for a given architecture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号