首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2400篇
  免费   152篇
  国内免费   47篇
化学   32篇
晶体学   11篇
力学   1254篇
综合类   2篇
数学   757篇
物理学   543篇
  2024年   1篇
  2023年   25篇
  2022年   22篇
  2021年   29篇
  2020年   53篇
  2019年   50篇
  2018年   60篇
  2017年   56篇
  2016年   61篇
  2015年   74篇
  2014年   72篇
  2013年   210篇
  2012年   91篇
  2011年   128篇
  2010年   118篇
  2009年   146篇
  2008年   119篇
  2007年   126篇
  2006年   111篇
  2005年   121篇
  2004年   96篇
  2003年   98篇
  2002年   76篇
  2001年   54篇
  2000年   67篇
  1999年   58篇
  1998年   61篇
  1997年   44篇
  1996年   42篇
  1995年   29篇
  1994年   42篇
  1993年   52篇
  1992年   35篇
  1991年   39篇
  1990年   15篇
  1989年   27篇
  1988年   20篇
  1987年   13篇
  1986年   11篇
  1985年   11篇
  1984年   11篇
  1983年   4篇
  1982年   8篇
  1981年   9篇
  1977年   2篇
  1975年   1篇
  1969年   1篇
排序方式: 共有2599条查询结果,搜索用时 15 毫秒
991.
Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only retains the advantage of good resolution of high wave number but also avoids the Gibbs phenomenon of the original upwind compact difference scheme. Compared with the classical 5th order WENO difference scheme, the new difference scheme is simpler and small in diffusion and computation load. By emplo...  相似文献   
992.
Two methods are introduced for the implementation of wall‐stress boundary conditions in variational‐multiscale large‐eddy simulations. In both methods, the boundary conditions are applied weakly using an interior‐penalty approach, where the discretization parameters are determined using information from a wall‐stress model. The performance of the methods is compared with that of hard Dirichlet boundary conditions for turbulent channel flows. A convergence study is performed for the second of the methods, which is found to be the most viable for practical application. Sources of error affecting the convergence study are discussed and quantified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
993.
A simple methodology for a high‐resolution scheme to be applied to compressible multicomponent flows with shock waves is investigated. The method is intended for use with direct numerical simulation or large eddy simulation of compressible multicomponent flows. The method dynamically adds non‐linear artificial diffusivity locally in space to capture different types of discontinuities such as a shock wave, contact surface or material interface while a high‐order compact differencing scheme resolves a broad range of scales in flows. The method is successfully applied to several one‐dimensional and two‐dimensional compressible multicomponent flow problems with shock waves. The results are in good agreement with experiments and earlier computations qualitatively and quantitatively. The method captures unsteady shock and material discontinuities without significant spurious oscillations if initial start‐up errors are properly avoided. Comparisons between the present numerical scheme and high‐order weighted essentially non‐oscillatory (WENO) schemes illustrate the advantage of the present method for resolving a broad range of scales of turbulence while capturing shock waves and material interfaces. Also the present method is expected to require less computational cost than popular high‐order upwind‐biased schemes such as WENO schemes. The mass conservation for each species is satisfied due to the strong conservation form of governing equations employed in the method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
994.
This paper applies the finite‐volume method to computations of steady flows of viscous and viscoelastic incompressible fluids in complex two and three‐dimensional geometries. The materials adopted in the study obey different constitutive laws: Newtonian, purely viscous Carreau–Yasuda as also Upper‐Convected Maxwell and Phan‐Thien/Tanner differential models, with a Williams–Landel–Ferry (WLF) equation for temperature dependence. Specific analyses are made depending on the rheological model. A staggered grid is used for discretizing the equations and unknowns. Stockage possibilities allow us to solve problems involving a great number of degrees of freedom, up to 1 500 000 unknowns with a desk computer. In relation to the fluid properties, our numerical simulations provide flow characteristics for various 2D and 3D configurations and demonstrate the possibilities of the code to solve problems involving complex nonlinear constitutive equations with thermal effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
995.
In this work we present a hybrid particle-grid Monte Carlo method for the Boltzmann equation, which is characterized by a significant reduction of the stochastic noise in the kinetic regime.  相似文献   
996.
Direct simulation of 3-D MHD (magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert (FCI) has been conducted. Two kinds of pressure equilibrium slot (PES) in FCI, which are used to balance the pressure difference between the inside and outside of FCI, are considered with a slot in Hartmann wall or a slot in side wall, respectively. The velocity and pressure distribution of FCI made of SiC/SiCf are numerically studied to illustrate the 3-D MHD flow effects, which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket. The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.  相似文献   
997.
998.
A highly parallel time integration method is presented for calculating viscoelastic flows with the DEVSS-G/DG finite element discretization. The method is a synthesis of an operator splitting time integration method that decouples the calculation of the polymeric stress by solution of a hyperbolic constitutive equation from the evolution of the velocity and pressure fields by solution of a generalized Stokes problem. Both steps are performed in parallel. The discontinuous finite element discretization of the hyperbolic constitutive equation leads to highly-parallel element-by-element calculation of the stress at each time step. The Stokes-like problem is solved by using the BiCGStab Krylov iterative method implemented with the block complement and additive levels method (BCALM) preconditioner. The solution method is demonstrated for the calculation of two-dimensional (2D) flow of an Oldroyd-B fluid around an isolated cylinder confined between two parallel plates. These calculations use extremely fine finite elements and expose new features of the solution structure.  相似文献   
999.
Classical semi‐implicit backward Euler/Adams–Bashforth time discretizations of the Navier–Stokes equations induce, for high‐Reynolds number flows, severe restrictions on the time step. Such restrictions can be relaxed by using semi‐Lagrangian schemes essentially based on splitting the full problem into an explicit transport step and an implicit diffusion step. In comparison with the standard characteristics method, the semi‐Lagrangian method has the advantage of being much less CPU time consuming where spectral methods are concerned. This paper is devoted to the comparison of the ‘semi‐implicit’ and ‘semi‐Lagrangian’ approaches, in terms of stability, accuracy and computational efficiency. Numerical results on the advection equation, Burger's equation and finally two‐ and three‐dimensional Navier–Stokes equations, using spectral elements or a collocation method, are provided. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
1000.
Experimental data on the spatial distribution of the gas phase in an axisymmetric impact jet are obtained by the particle image velocimetry/laser-induced fluorescence (PIV/LIF) method. It is shown that the distribution of bubbles in the flow is determined by the dynamics of vortex structures. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 33–38, July–August, 2009.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号