首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14392篇
  免费   1208篇
  国内免费   447篇
化学   2731篇
晶体学   66篇
力学   6720篇
综合类   86篇
数学   2495篇
物理学   3949篇
  2024年   16篇
  2023年   144篇
  2022年   248篇
  2021年   289篇
  2020年   380篇
  2019年   288篇
  2018年   331篇
  2017年   357篇
  2016年   389篇
  2015年   429篇
  2014年   548篇
  2013年   1021篇
  2012年   709篇
  2011年   912篇
  2010年   630篇
  2009年   822篇
  2008年   789篇
  2007年   806篇
  2006年   712篇
  2005年   611篇
  2004年   646篇
  2003年   552篇
  2002年   489篇
  2001年   373篇
  2000年   377篇
  1999年   328篇
  1998年   331篇
  1997年   320篇
  1996年   301篇
  1995年   259篇
  1994年   233篇
  1993年   214篇
  1992年   211篇
  1991年   156篇
  1990年   140篇
  1989年   113篇
  1988年   104篇
  1987年   68篇
  1986年   70篇
  1985年   78篇
  1984年   69篇
  1983年   37篇
  1982年   76篇
  1981年   22篇
  1980年   12篇
  1979年   6篇
  1978年   7篇
  1976年   5篇
  1971年   6篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
Relative permeability functions for immiscible displacements in porous media show a wide range of profiles. Although, this behavior is well known, its impact on the stability of the displacement process is unexplored. Our analysis clearly demonstrates for the first time that the viscous instability characteristics of two-phase flows are governed not only by their end point values, but are strongly dependent on the actual profile of relative permeability functions. Linear stability analysis predicts the capacity of the flow to develop large scale fingers which can result in substantial bypassing of the resident fluid. It is observed that relative permeability functions attributed to drainage processes yield a more unstable displacement as compared to functions related to imbibition processes. Moreover, instability is observed to increase for those relative permeability functions which result from increased wettability of the wetting fluid. High accuracy numerical simulations show agreement with these predictions and demonstrate how large amplitude viscous fingers result in significant bypassing for certain relative permeability functions. In the nonlinear regime, the finger amplitude grows at a rate ∝ t1/2 initially, drops to t1/4 at a later time and finally grows ∝ t. The basic mechanisms of finger interaction, however, are not substantially influenced by relative permeability functions.  相似文献   
52.
A particle imaging technique has been used to collect droplet displacement statistics in a round turbulent jet of air. Droplets are injected on the jet axis, and a laser sheet and position-sensitive photomultiplier tube are used to track their radial displacement and time-of-flight. Dispersion statistics can be computed which are Lagrangian or Eulerian in nature. The experiments have been simulated numerically using a second-order closure scheme for the jet and a stochastic simulation for the particle trajectories. Results are presented for non-vaporizing droplets of sizes from 35 to 160 μm. The simulations have underscored the importance of initial conditions and early droplet displacement history on the droplet trajectory for droplets with large inertia relative to the turbulence. Estimates of initial conditions have been made and their effect on dispersion is quantified.  相似文献   
53.
A general relationship between the volume fraction and the specific interfacial area for averaged dispersed two-phase flows is proposed. This relationship, expressed as a basic set of two scalar evolution equations and two vectorial non-uniformity state equations, is an analytical result obtained by a systematic approach using the derivatives of some generalized functions and a local volume-averaging technique. The proposed set of equations was expressed for measurable macroscopic parameters of the system and has the same generality as the averaged transport equations of two-phase flows. By combination of the basic set of equations, called the averaged topological equations (ATEs), second-order ATEs for the volume fraction were found. The second-order ATEs were expressed both by a Lagrangian formulation and by a Eulerian formulation. The importance and physical meaning of the ATEs developed in this study were clarified within the framework of the theory of kinematic waves.  相似文献   
54.
Urine transport is made from the kidney to the bladder through the ureter by isolated pockets called bolus. To determine the urine flow in a bolus, we use an adherence condition on the interface urine/wall. It gives us an infinite linear system verified by a set of parameters. An iterative and convergent algorithm allows us to solve this system and to determine analytically the components of the velocity vector in the bolus. To cite this article: A. Vogel et al., C. R. Mecanique 332 (2004).  相似文献   
55.
A solution methodology has been developed for incompressible flow in general curvilinear co‐ordinates. Two staggered grids are used to discretize the physical domain. The first grid is a MAC quadrilateral mesh with pressure arranged at the centre and the Cartesian velocity components located at the middle of the sides of the mesh. The second grid is so displaced that its corners correspond to the centre of the first grid. In the second grid the pressure is placed at the corner of the first grid. The discretized mass and momentum conservation equations are derived on a control volume. The two pressure grid functions are coupled explicitly through the boundary conditions and implicitly through the velocity of the field. The introduction of these two grid functions avoids an averaging of pressure and velocity components when calculating terms that are generated in general curvilinear co‐ordinates. The SIMPLE calculation procedure is extended to the present curvilinear co‐ordinates with double grids. Application of the methodology is illustrated by calculation of well‐known external and internal problems: viscous flow over a circular cylinder, with Reynolds numbers ranging from 10 to 40, and lid‐driven flow in a cavity with inclined walls are examined. The numerical results are in close agreement with experimental results and other numerical data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
56.
提出了在无外力作功的情况下,具有Bauschinger效应的弹塑性材料处于屈服状态产生自发的塑性流动时应满足的条件.这个条件不仅与材料的力学性能有关,而且还处决于材料的具体的载荷边界条件和变形.举例说明了承受拉一扭组合的薄壁圆筒中,采用组合强化模型时,产生塑性流动的具体条件.  相似文献   
57.
Biological transformation of volatile organic compounds is one of the key factors that influence contaminant-plume evolution and thus natural attenuation. In this study we investigate the effect of biological transformation on the transport of contaminants in the aqueous and gaseous phases. The analysis includes the study of the effect of density-driven advection of contaminants in the gaseous phase on multiphase and multispecies flow, fate and transport modeling in the subsurface. Trichloroethylene (TCE) and its two byproducts, dichloroethylene and vinyl chloride, are analyzed as the target contaminants. Our results indicate that density-driven advection of the gaseous phase, which is initiated by evaporation of TCE as a nonaqueous phase liquid, increases the downward and also the lateral migration of TCE within the unsaturated zone. This process also influences the location of high-concentration zones of the byproducts of TCE in the unsaturated and the saturated zones. Biotransformation of TCE contributes to the reduction of dissolved TCE plume development as expected. The daughter byproducts, which are introduced into the subsurface system, show distinct transport patterns as they are affected by their independent degradation kinetics and density-driven advection. These observations, which are based on our simulation results for biotransformation and transport of TCE and its byproducts, are useful in evaluating the natural attenuation processes, its potential health hazards and also the evaluation of potential plume development at contaminated sites.  相似文献   
58.
The indirect boundary element method was used to study the hydrodynamics of oscillatory viscous flow over prolate and oblate spheroids, and over hemispheroidal bodies hinged to a plate. Analytic techniques, such as spheroidal coordinates, method of images, and series representations, were used to make the numerical methods more efficient. A novel method for computing the hydrodynamic torque was used, since for oscillatory flow the torque cannot be computed directly from the weightings. Instead, a Green's function for torque was derived to compute the torque indirectly from the weightings. For full spheroids, the method was checked by comparing the results to exact solutions at low and high frequencies, and to results computed using the singularity method. For hemispheroids hinged to a plate, the method for low frequencies was checked by comparing the results to previous results, and to exact solutions at high frequencies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
59.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   
60.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号