全文获取类型
收费全文 | 3631篇 |
免费 | 370篇 |
国内免费 | 339篇 |
专业分类
化学 | 3592篇 |
晶体学 | 196篇 |
力学 | 56篇 |
综合类 | 6篇 |
数学 | 9篇 |
物理学 | 481篇 |
出版年
2024年 | 6篇 |
2023年 | 57篇 |
2022年 | 83篇 |
2021年 | 131篇 |
2020年 | 210篇 |
2019年 | 164篇 |
2018年 | 128篇 |
2017年 | 143篇 |
2016年 | 202篇 |
2015年 | 217篇 |
2014年 | 216篇 |
2013年 | 289篇 |
2012年 | 166篇 |
2011年 | 157篇 |
2010年 | 136篇 |
2009年 | 190篇 |
2008年 | 199篇 |
2007年 | 217篇 |
2006年 | 183篇 |
2005年 | 178篇 |
2004年 | 162篇 |
2003年 | 144篇 |
2002年 | 97篇 |
2001年 | 68篇 |
2000年 | 79篇 |
1999年 | 70篇 |
1998年 | 60篇 |
1997年 | 57篇 |
1996年 | 50篇 |
1995年 | 49篇 |
1994年 | 48篇 |
1993年 | 24篇 |
1992年 | 21篇 |
1991年 | 20篇 |
1990年 | 13篇 |
1989年 | 16篇 |
1988年 | 15篇 |
1987年 | 10篇 |
1986年 | 14篇 |
1985年 | 6篇 |
1984年 | 7篇 |
1983年 | 2篇 |
1982年 | 4篇 |
1981年 | 5篇 |
1980年 | 5篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1976年 | 5篇 |
1974年 | 2篇 |
1973年 | 7篇 |
排序方式: 共有4340条查询结果,搜索用时 15 毫秒
991.
CASSCF and CCI calculations have been performed to analyze the bonding in Ni(C2H4)2. Three different relative orientations of the two olefins have been studied. It is found that a structure with D2d
symmetry, where the C-C bonds in the two olefins make a 90 degree angle to each other, gives the lowest energy. A D2h
form, with the two C-C bonds and Ni in the same plane, is 10.3 kcal/ mol higher in energy. The reason for the preference of the D2d form is analyzed in terms of valence bond theory, and is found to be due to a d
8 structure with two simultaneous d
bonds. A C
2v
form, for which the two nickel olefin bonds make a 103 degree angle to each other and the C-C bonds are parallel to each other, is 32 kcal/mol higher in energy than the D2d
form. The low binding energy of the C
2v
form is due to a poor interaction with inefficient sd hybridization. 相似文献
992.
基于理论计算,我们报道了Td对称性的[Pd4(μ3-SbH3)4(SbH3)4]团簇及一系列类似物的结构与成键。成键分析表明:每个Pd原子都是sp3杂化,其10个价电子与四个配体提供的8个价电子,满足18电子规则。并且,每个Pd原子与四个桥连的SbH3配体可以形成四个离域的四中心两电子超级σ键或八中心两电子键。一方面,根据超原子网络模型,这个钯团簇可以描述成四个2电子的超原子网络。另一方面,凝胶模型表明,它可以合理化的作为电子组态是1S21P6的8电子超原子。与此同时,d10…d10闭壳层相互作用在稳定Pd4四面体结构中起到了关键性的作用。密度泛函理论计算表明:Td对称性[Pd4(μ3-SbH3)4(SbH3)4]团簇表现出高度稳定性,具有充满的电子壳层,大的HOMO-LUMO带隙(2.84 eV)以及负的核独立化学位移(NICS)值。此外,基于[Pd4(μ3-SbH3)4(SbH3)4]结构与成键模式,我们设计了一系列稳定的类似物,其有可能被实验合成出来。 相似文献
993.
利用水热方法,以5-氯烟酸(5-ClnicH)和菲咯啉(phen)或2,2′-联咪唑(H_2biim)分别与NiCl_2·6H_2O和ZnCl_2反应,合成了1个三维配位聚合物{[Ni(μ-5-Clnic)(μ_3-5-Clnic)(μ-H_2O)_(0.5)]·1.5H_2O}_n(1)以及3个一维链状配位聚合物[Ni(5-Clnic)(μ-5-Clnic)(H_2biim)]_n(2)、[Zn(5-Clnic)(μ-5-Clnic)(H_2biim)]_n(3)和{[Zn(5-Clnic)(μ-5-Clnic)(phen)]·2H_2O}_n(4),并对其结构、荧光和磁性质进行了研究。结构分析结果表明4个配位聚合物分别属于单斜、正交(2、3)和三斜晶系,I2/a、Pbcn(2、3)和P■空间群。配合物1具有基于双核单元的三维框架结构,而配合物2~4呈现一维链结构。这些一维链通过链间N-H…O氢键和Cl…Cl卤键作用进一步连接成了二维网络和三维超分子框架结构。研究表明,聚合物1和2中相邻Ni髤离子间存在反铁磁相互作用,配合物3和4在室温下能发出蓝色荧光。 相似文献
994.
A coordination polymer of [Zn(BBP)(p-CPOA)]n(where BBP is 2,6-bis(benzimidazolyl)pyridine and p-CPOA is p-carboxylato-phenoxyacetate dianion) has been synthesized and characterized by elemental analysis, IR, TG, and the single crystal structure was determined by X-ray diffraction. The crystal crystallizes in the monoclinic system, space group of P21/n with a=1.397 3(4) nm, b=1.138 4(3) nm, c=1.575 9(5) nm, β=91.805(1)°, V=2.505 4(13) nm3, Z=4, Dc=1.513 g·cm-3, μ=1.030 mm-1 and F(000)=1 168. Zn(Ⅱ) ion is penta-coordinated and surrounded by two carboxylate O atoms from two different p-CPOA groups in a bis-monodentate mode, three N atoms from the 2,6-bis(benzimidazolyl)pyridine ligand, completing a distorted trigonal bipyramidal coordination configuration. The structure is a helix with a long pitch of 1.138 4 nm. Under direction of supramolecular recognition and attraction, the adjacent chains are formed the double-stranded chain through π-π stacking between the 2,6-bis(benzimidazolyl)pyridine ligands and hydrogen-bonding interactions. A three-dimensional supramolecular network is further constructed through these interactions between the helices. The TG shows that its chain skeleton is thermally stable up to 382 ℃. CCDC: 626650. 相似文献
995.
在以二氧化硅为核的聚酰胺(PAMAM)树枝状聚合物的外端, 通过表面化学修饰引入了具有发射荧光能力的荧光素分子. 通过稳态荧光方法研究其固体和在水和丙酮的悬浮液中的光物理行为. 试验结果表明, 固体样品中, 在零代树枝状分子(G0F)中, 荧光发射主要是激基缔合物的发射, 在第一(G1F)和第二代(G2F)中只有基态复合物的发射. 在不同的悬浮液中不同的光物理行为表明, 树枝状分子中树枝链间的氢键作用的大小决定荧光素基团间是形成激基缔合物还是形成基态复合物. 这为设计和开发新型“壳-核”型纳米二氧化硅荧光传感器提供了有用的实验依据. 相似文献
996.
The equation of the state of the hydrogen bonding fluid system of AaDd type is studied by the principle of statistical mechanics. The influences of hydrogen bonds on the equation of state of the system are obtained based on the change in volume due to hydrogen bonds. Moreover, the number density fluctuations of both molecules and hydrogen bonds as well as their spatial correlation property are investigated. Furthermore, an equation describing relation between the number density correlation function of "molecules-hydrogen bonds" and that of molecules and hydrogen bonds is derived. As application,taking the van der Waals hydrogen bonding fluid as an example, we considered the effect of hydrogen bonds on its relevant statistical properties. 相似文献
997.
A new mononuclear Co(Ⅱ) complex, [Co(hmz)2(H2O)4]·2H2O, has been synthesized by the reaction of Co(CH3COO)2·4H2O with 1-(4-hydroxyphenyl)-5-mercaptotetrazole (Hhmz). It crystallizes in the monoclinic system, space group P21/n with a = 13.502(5), b = 6.718(3), c = 13.972(6) (A), β = 117.532(4)°, V = 1123.9(8) (A)3, Z = 2, M r = 553.45, F(000) = 570, Dc = 1.635 g/cm3, μ = 1.008 mm-1, the final R = 0.0272 and wR = 0.0684 for 2194 observed reflections (Ⅰ> 2σ(Ⅰ)). The Co(Ⅱ) is six-coordinated by two nitrogen atoms from two hmz-1 ligands and four water molecules, forming an octahedral geometry. The intermolecular hydrogen bonding and offset-panel π-π stacking interactions between the adjacent molecules extend the compound into a three- dimensional supramolecular framework. The title compound emits strong blue fluorescent light (λem(max) = 427 nm) at room temperature and is red-shifted compared with free ligand Hhmz (λem(max) = 342 nm). 相似文献
998.
The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012 , 33, 958−971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial—yet promising—attempts towards mimicking the structure of natural biomacromolecules via single‐chain folding of well‐defined linear polymers via so‐called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single‐chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single‐chain folded structures via selective point folding. The second part of the feature article addresses the folding of well‐defined single‐chain polymers by means of repeat unit folding. The current state of the art in the field of single‐chain folding indicates that repeat unit folding‐driven nanoparticle preparation is well‐advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the—in our view—open key questions is provided that may guide future biomimetic design efforts.
999.
Exothermic nonreversing process is predicted to present in the phase transition of poly(N‐isopropylacrylamide) (PNIPAM). By employing TOPEM‐DSC, exothermic nonreversing heat flow peak is observed for the first time, and it usually appears under nonquasi‐static conditions. The exothermic nonreversing heat flow is proved to be from the formation of hydrogen bonds by the comparative studies on the phase transition of poly(N,N‐diethylacrylamide) (PDEAM) and cyclic heating and cooling of PDEAM and PNIPAM. Further TOPEM‐DSC studies on the phase transition of poly(NIPAM‐co‐DEAM) and poly(NIPAM‐co‐AAm) prove that hydrophobic force rather than hydrogen bonding is the main driving force for the phase transition, and hydrophobic force is also the driving force for the formation of inter‐ and intrachain hydrogen bonding. However, the phase transition driven by only hydrophobic force is a slow process. The combined action of hydrogen bonding and hydrophobic force makes the phase transition occur much faster. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1869–1877 相似文献
1000.
Jiajia Guo Wenli Cao Shuailei Li Kanghua Miao Jirong Song Jie Huang 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(2):166-169
The crystal engineering of coordination polymers has aroused interest due to their structural versatility, unique properties and applications in different areas of science. The selection of appropriate ligands as building blocks is critical in order to afford a range of topologies. Alkali metal cations are known for their mainly ionic chemistry in aqueous media. Their coordination number varies depending on the size of the binding partners, and on the electrostatic interaction between the ligands and the metal ions. The two‐dimensional coordination polymer poly[tetra‐μ‐aqua‐[μ4‐4,4′‐(diazenediyl)bis(5‐oxo‐1H‐1,2,4‐triazolido)]disodium(I)], [Na2(C4H2N8O2)(H2O)4]n, (I), was synthesized from 4‐amino‐1H‐1,2,4‐triazol‐5(4H)‐one (ATO) and its single‐crystal structure determined. The mid‐point of the imino N=N bond of the 4,4′‐(diazenediyl)bis(5‐oxo‐1H‐1,2,4‐triazolide) (ZTO2−) ligand is located on an inversion centre. The asymmetric unit consists of one Na+ cation, half a bridging ZTO2− ligand and two bridging water ligands. Each Na+ cation is coordinated in a trigonal antiprismatic fashion by six O atoms, i.e. two from two ZTO2− ligands and the remaining four from bridging water ligands. The Na+ cation is located near a glide plane, thus the two bridging O atoms from the two coordinating ZTO2− ligands are on adjacent apices of the trigonal antiprism, rather than being in an anti configuration. All water and ZTO2− ligands act as bridging ligands between metal centres. Each Na+ metal centre is bridged to a neigbouring Na+ cation by two water molecules to give a one‐dimensional [Na(H2O)2]n chain. The organic ZTO2− ligand, an O atom of which also bridges the same pair of Na+ cations, then crosslinks these [Na(H2O)2]n chains to form two‐dimensional sheets. The two‐dimensional sheets are further connected by intermolecular hydrogen bonds, giving rise to a stabile hydrogen‐bonded network. 相似文献