首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4497篇
  免费   148篇
  国内免费   908篇
化学   4419篇
晶体学   96篇
力学   35篇
综合类   5篇
数学   5篇
物理学   993篇
  2024年   28篇
  2023年   240篇
  2022年   139篇
  2021年   142篇
  2020年   137篇
  2019年   112篇
  2018年   109篇
  2017年   130篇
  2016年   107篇
  2015年   113篇
  2014年   176篇
  2013年   252篇
  2012年   316篇
  2011年   285篇
  2010年   246篇
  2009年   362篇
  2008年   385篇
  2007年   364篇
  2006年   315篇
  2005年   264篇
  2004年   245篇
  2003年   155篇
  2002年   117篇
  2001年   103篇
  2000年   99篇
  1999年   94篇
  1998年   81篇
  1997年   72篇
  1996年   60篇
  1995年   49篇
  1994年   44篇
  1993年   28篇
  1992年   20篇
  1991年   26篇
  1990年   19篇
  1989年   16篇
  1988年   16篇
  1987年   11篇
  1986年   5篇
  1985年   9篇
  1984年   9篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   12篇
  1979年   8篇
  1978年   4篇
  1977年   5篇
  1973年   6篇
  1971年   2篇
排序方式: 共有5553条查询结果,搜索用时 20 毫秒
101.
Herein we describe the self-assembly of an achiral molecule into macroscopic helicity as well as the emergent chiral-selective spin-filtering effect. It was found that a benzene-1,3,5-tricarboxamide (BTA) motif with an aminopyridine group in each arm could coordinate with AgI and self-assemble into nanospheres. Upon sonication, symmetry breaking occurred and the nanospheres transferred into helical nanofibers with strong CD signals. Although the sign of the CD signals appeared randomly, it could be controlled by using the as-made chiral assemblies as a seed. Furthermore, it was found that the charge transport of the helical nanofibers was highly selective with a spin-polarization transport of up to 45 %, although the chiral nanofibers are composed exclusively from achiral building blocks. This work demonstrates symmetry breaking under sonication and the chiral-selective spin-filtering effect.  相似文献   
102.
In this work, we innovatively assembled two types of traditional photosensitizers, that is pyridine ruthenium/ferrum (Ru(bpy)32+/Fe(bpy)32+) and porphyrin/metalloporphyrin complex (2HPor/ZnPor) by covalent linkage to get a series of dual photosensitizer-based three-dimensional metal-covalent organic frameworks (3D MCOFs), which behaved strong visible light-absorbing ability, efficient electron transfer and suitable band gap for highly efficient photocatalytic hydrogen (H2) evolution. Rubpy-ZnPor COF achieved the highest H2 yield (30 338 μmol g−1 h−1) with apparent quantum efficiency (AQE) of 9.68 %@420 nm, which showed one of the best performances among all reported COF based photocatalysts. Furthermore, the in situ produced H2 was successfully tandem used in the alkyne hydrogenation with ≈99.9 % conversion efficiency. Theoretical calculations reveal that both the two photosensitizer units in MCOFs can be photoexcited and thus contribute optimal photocatalytic activity. This work develops a general strategy and shows the great potential of using multiple photosensitive materials in the field of photocatalysis.  相似文献   
103.
Aqueous rechargeable zinc-ion batteries (ARZBs) are impeded by the mutual problems of unstable cathode, electrolyte parasitic reactions, and dendritic growth of zinc (Zn) anode. Herein, a triple-functional strategy by introducing the tetramethylene sulfone (TMS) to form a hydrated eutectic electrolyte is reported to ameliorate these issues. The activity of H2O is inhibited by reconstructing hydrogen bonds due to the strong interaction between TMS and H2O. Meanwhile, the preferentially adsorbed TMS on the Zn surface increases the thickness of double electric layer (EDL) structure, which provides a shielding buffer layer to suppress dendrite growth. Interestingly, TMS modulates the primary solvation shell of Zn2+ ultimately to achieve a novel solvent co-intercalation ((Zn-TMS)2+) mechanism, and the intercalated TMS works as a “pillar” that provides more zincophilic sites and stabilizes the structure of cathode (NH4V4O10, (NVO)). Consequently, the Zn||NVO battery exhibits a remarkably high specific capacity of 515.6 mAh g−1 at a low current density of 0.2 A g−1 for over 40 days. This multi-functional electrolytes and solvent co-intercalation mechanism will significantly propel the practical development of aqueous batteries.  相似文献   
104.
We report on a dendronized bis-urea macrocycle 1 self-assembling via a cooperative mechanism into two-dimensional (2D) nanosheets formed solely by alternated urea-urea hydrogen bonding interactions. The pure macrocycle self-assembles in bulk into one-dimensional liquid-crystalline columnar phases. In contrast, its self-assembly mode drastically changes in CHCl3 or tetrachloroethane, leading to 2D hydrogen-bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick-like hydrogen bonding pattern between bis-urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non-covalent interaction motif, which is of great interest for materials development.  相似文献   
105.
Cyclical bifurcated hydrogen bonded structures are proposed for aqueous solutions of hydrofluoric acid and for the bifluoride ion which are consistent with the spectral data. The structure proposed for HF is also applicable to solutions in organic solvents. Raman spectra of tetramethylguanidinium perchlorate suggest that the corresponding Raman spectra of perchloric acid solutions may not be interpreted in terms of a completely dissociated acid. Other evidence including activity coefficient, heat capacity and partial molal volume data suggest that there is some association in relatively dilute perchloric acid solutions between the perchlorate ion and the hydrated proton. This association decreases in concentrated aqueous solutions.  相似文献   
106.
Single crystals of (NMe4)(HF2) were obtained during attempted recrystallization of NMe4F from fluoroolefin. X‐ray diffraction data show that (NMe4)(HF2) crystallizes in the orthorhombic space group Pmmn with unit cell dimensions a = 6.535(2), b = 8.688(3), and c = 5.333(2) Å. The symmetric and virtually linear HF2 anions exhibit a short F···F distance of 2.256(2) Å. The both crystal structures of (NMe4)(H2F3) (orthorhombic, Pbca, a = 8.509(1), b = 11.273(2), and c = 14.880(2) Å) and CsH2F3 (orthorhombic, P212121, a = 7.345(3), b = 9.126(4), and c = 11.444(4) Å) contain dihydrogentrifluoride anions, H2F3?, which have a bent shape and F···F distances of 2.30‐2.34Å.  相似文献   
107.
The kinetics of hydrogen exchange in molecular systems with H-bonds has been studied by means of kinetic IR spectroscopy and low-temperature NMR spectroscopy. The experimental values of the rate constants and activation energies for molecules capable of forming H-bonds as both proton donors and proton acceptor are collected and analyzed from the point of view of the influence of H-bond formation ability of the molecules-partners. The evidence available testifies to a molecular mechanism of the H-exchange reactions in inert solvents and in the gas phase via the formation of cyclic bimolecular intermediates. The different mechanisms and the structure of intermediate complex of molecular H-exchange process in inert media are discussed and the possible paths of experimental elucidation of reaction mechanism are offered.  相似文献   
108.
The objective of this study was to evaluate the performance of a photocatalysis/H2O2/metal membrane hybrid system in the degradation of humic acid. A metal membrane of nominal pore size 0.5 μm was used in the experiment for separation of TiO2 particles. Hydrogen peroxide was tested as an oxidant. The efficiency of removal of CODCr and color increased rapidly for initial hydrogen peroxide concentrations up to 50 mg L−1. The efficiency of removal of CODCr and color by 50 mg L−1 initial hydrogen peroxide concentration was approximately 95 and 98%, respectively. However, addition of hydrogen peroxide over 50 mg L−1 inhibited the efficiency of the system. Addition of hydrogen peroxide to a UV/TiO2 system enhanced efficiency of removal of CODCr and color compared with no addition of hydrogen peroxide. This may be ascribed to capture electrons ejected from TiO2 and to the production of OH radicals. Application of the metal membrane in the UV/TiO2/H2O2 system enhanced the efficiency of removal of CODCr and color because of adsorption by the metal membrane surface and the production of OH radicals. By application of a metal membrane with a nominal pore size of 0.5 μm, TiO2 particles were effectively separated from the treated water by metal membrane rejection. The photocatalytic metal membrane had much less resistance than the humic acid, TiO2, and humic acid/TiO2 because of the degradation of humic acid by the photocatalytic reaction.  相似文献   
109.
Baiqing Yuan  Tianyan You 《Talanta》2009,79(3):730-1309
A novel tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) cathodic electrochemiluminescence (ECL) was generated at −0.78 V at the Pt electrode in acetonitrile (ACN), which suggested that the cathodic ECL differed from conventional cathodic ECL. It was found that tripropylamine (TPrA) could enhance this cathodic ECL and the linear range (log-log plot) was 0.2 μM-0.2 mM. In addition, hydrogen peroxide (H2O2) could inhibit the cathodic ECL and was indirectly detected with the linear range of 27-540 μM. The RSD (n = 12) of the ECL intensity in the presence of 135 μM H2O2 was 0.87%. This method was also demonstrated for the fast determination of H2O2 in disinfectant sample and satisfactory results were obtained.  相似文献   
110.
The reaction of phenols and dihydroxybenzenes with epoxide in the presence of nano CaCO3 was studied. Catechol could react with epoxide and gave monochlorohydrin derivative; other dihydroxybenzenes and monomeric phenols had no reaction under the same conditions. The reaction of catechol with epoxide did not occur when nano CaCO3 was replaced by a normal one. These were attributed to the strong interaction between nano CaCO3 and the substrate as catechol possessed intrahydrogen bond and excess active hydrogen, which can induce the intramolecular proton transfer via the intramolecular hydrogen bond and promote the reaction of hydroxyl and epoxide. This is an example revealing the unique role of the hydrogen bond played in chemical reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号