首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   27篇
  国内免费   38篇
化学   141篇
晶体学   4篇
力学   11篇
综合类   1篇
数学   16篇
物理学   96篇
  2023年   15篇
  2022年   8篇
  2021年   7篇
  2020年   12篇
  2019年   9篇
  2018年   12篇
  2017年   11篇
  2016年   7篇
  2015年   9篇
  2014年   10篇
  2013年   15篇
  2012年   12篇
  2011年   15篇
  2010年   14篇
  2009年   13篇
  2008年   7篇
  2007年   14篇
  2006年   15篇
  2005年   6篇
  2004年   12篇
  2003年   6篇
  2002年   7篇
  2001年   13篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
31.
我们制备研究了基于结构为氧化铟锡(ITO)/C_(60)(1.2nm):MoO_3(0.4nm)/1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi):三(2-苯基吡啶)铱[Ir(ppy)_3](33%,90 nm)/LiF (0.7 nm)/Al (120 nm)的高效绿色磷光单层有机发光二极管(OLED)。分别将C_(60),MoO_3与C_(60):MoO_3混合物作为空穴注入层(HIL)作为对比。TPBi在发光层中起着主体以及电子传输材料的双重作用。在使用电子传输型主体的单层OLED中,空穴注入层性质对于调节电子/空穴注入以获得电荷载流子传输平衡起重要作用。因此,适当调节空穴注入层是实现高效单层OLED的关键因素。由于MoO_3较大的电子亲和能(6.37 eV)会诱导电子从C_(60)的最高占据分子轨道(HOMO)能级转移至MoO_3,从而形成C_(60)阳离子,并使得Mo元素的价态从+6降至+5,C_(60):MoO_3混合就可以较好的调节空穴注入性质。最终实现最大电流效率为35.88 cd·A~(-1)的单层有机发光器件。  相似文献   
32.
33.
Advancing inverted (p-i-n) perovskite solar cells (PSCs) is critical for commercial applications given their compatibility with different bottom cells for tandem photovoltaics, low-temperature processability (≤100 °C), and promising operational stability. Although inverted PSCs have achieved an efficiency of over 25 % using doped or expensive organic hole transport materials (HTMs), their synthesis cost and stability still cannot meet the requirements for their commercialization. Recently, dopant-free and low-cost non-stoichiometric nickel oxide nanocrystals (NiOx NCs) have been extensively studied as a low-cost and effective HTM in perovskite optoelectronics. In this minireview, we summarize the synthesis and surface-functionalization methods of NiOx NCs. Then, the applications of NiOx NCs in other perovskite optoelectronics beyond photovoltaics are discussed. Finally, we provide a perspective for the future development of NiOx NCs for the commercialization of perovskite optoelectronics.  相似文献   
34.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used hole transporting layer (HTL) in organic solar cells (OSCs), but its acidity severely reduces the stability of devices. Until now, very few HTLs were developed to replace PEDOT:PSS toward stable and high-performance OSCs. Herein, a new cobalt-lanthanum (Co-La) inorganic system was reported as HTL to show a high conversion efficiency (PCE) of 18.82 %, which is among the top PCEs in binary OSCs. Since electron-rich outer shell of La atom can interact with Co atom to form charge transfer complex, the work function and conductivity of the Co-La system could be simultaneously enhanced compared to Co or La-based HTLs. This Co-La system could also be applied into other OSCs to show high performance. All these results demonstrate that binary Co-La systems as HTL can efficiently tackle the issue in hole transporting and show powerful application in OSCs to replace PEDOT:PSS.  相似文献   
35.
The perovskite solar cells (PSCs) with high efficiency and stability are in great demand for commercial applications. Although the remarkable photovoltaic feature of perovskite layer plays a great role in improving the PCE of PSCs, the inevitable defects and poor stability of perovskite, etc. are the bottleneck and restrict the commercialization of PSCs. Herein, a review provides a strategy of applying aggregation-induced emission (AIE) molecules, containing passivation functional groups and distinct AIE character, which serves as the alternative materials for fabricating high-efficiency and high-stability PSCs. The methods of introducing AIE molecules to PSCs are also summarized, including additive engineering, interfacial engineering, hole transport materials and so on. In addition, the functions of AIE molecule are discussed, such as defects passivation, morphology modulation, well-matched energy level, enhanced stability, hole transport ability, carrier recombination suppression. Finally, the detailed functions of AIE molecules are offered and further research trend for high performance PSCs based on AIE materials is proposed.  相似文献   
36.
以2,7-二溴咔唑为原料经过N-烷基化、Suzuki偶联反应、Buchwald-Hartwig偶联反应合成了有机发光二极管(OLED)空穴传输材料N,N’-二苯基-N,N’-二(9,9-二甲基芴-2-基)-9-己基-(4,4’-二胺基苯基)咔唑,利用NMR、IR和熔点等分析方法对产物结构进行了表征,并通过TG、UV-Vis及荧光光谱研究了物质的热稳定性和光学性能。  相似文献   
37.
Three types of organic electroluminescence(EL) cells with organic material FY as the EL-emitting layer and a copper phthalocyanine (CuPc) as the hole transport layer which were sandwiched between indium/tinoxde(ITO) and aluminum electrode have been fabricated by vacuum-vapor and Langmuir-Blodgett (LB) deposition:(a) ITO/FY/Al;(b)ITO/CuPc/FY/Al;(c) ITO/CuPc(LB)/FY/Al. It was found for the first time that the cell with the LB film as the hole transport layer has the highest luminescent intensity at the same bias-voltage. These results are attributed to the order orientation of the CuPc molecule in the layer of LB film.  相似文献   
38.
邱勇 《高分子科学》1999,(4):337-342
Organic electroluminescent diodes with a heterostructure of 9,10-bis(phenylethnyl) anthracene(BPEA) doped poly(N-vinylcarbazole) (PVK)/tris(8-hydroxyquinoline)aluminum (Alq_3) have beenfabricated. The electroluminescence (EL) both from BPEA and Alq_3 were observed when the Alq_3 layer isthin enough. With increasing thickness of the Alq_3 layer, the relative emission intensity of BPEA is graduallydecreased. For the thin Alq_3 layer structure, the light emission of Alq_3 becomes more dominant as the appliedvoltage increases. It is proposed that the electron-hole recombination takes place in both PVK and Alq_3 films.The field-induced quenching theory has also been applied to explain the change of the EL spectra withapplied voltage.  相似文献   
39.
The thermionic hole emissions from a p-type Si0.67Ge0.33 quantum well with a width of 7 nm and a point defect were investigated using deep level transient spectroscopy. An activation energy of 0.22 eV from the quantum well is consistent with the heavy hole level from the bottom of the well. The defect-related band with an energy of 0.30 eV originated from the space charge related to the point defect in the vicinity of the quantum well heterostructure. The origin of the point-defect-related band was confirmed by photoluminescence and the deep level was further clarified by using capacitance-voltage measurements and simulation by introducing a simple model of an interfacial hole trap center. The deep hole trap center apparently disappeared by an annealing effect, indicating that point defects are subject to thermal annealing. The microscopic measurement provides evidence on point defects in the quantum well structure and the thermal annealing also enhances the thermionic hole emission from the quantum well structure. Received: 22 August 1998 /Accepted: 15 February 1999  相似文献   
40.
Hole transporting polymers were prepared by condensation polymerization of triphenylamine and N,N,N',N'‐tetraphenylbenzidine (TPD) having alkyl group with aldehydes in the presence of p‐toluenesulfonic acid. The obtained polymers had molecular weight higher than 10,000 and good film formation ability. It was found that the aromatic amine monomers were connected with aldehyde monomer at the p‐position of the phenyl group. TPD‐aldehyde polymers had almost the same UV absorption and redox potentials as those of TPD monomer indicating that the electronic structure of amine unit did not change by the polymerization. The hole transporting mobility was in the range of 10−3‐10−6cm2/Vs. The electroluminescent device consisting of ITO/TPD polymer/Alq/Mg‐Ag had a maximum luminance of 9000 cd/m2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号