首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1882篇
  免费   83篇
  国内免费   23篇
化学   747篇
晶体学   38篇
力学   129篇
综合类   5篇
数学   42篇
物理学   1027篇
  2024年   2篇
  2023年   11篇
  2022年   30篇
  2021年   28篇
  2020年   38篇
  2019年   27篇
  2018年   13篇
  2017年   40篇
  2016年   36篇
  2015年   53篇
  2014年   64篇
  2013年   134篇
  2012年   56篇
  2011年   95篇
  2010年   54篇
  2009年   116篇
  2008年   126篇
  2007年   132篇
  2006年   137篇
  2005年   90篇
  2004年   73篇
  2003年   71篇
  2002年   66篇
  2001年   66篇
  2000年   62篇
  1999年   54篇
  1998年   60篇
  1997年   27篇
  1996年   39篇
  1995年   18篇
  1994年   22篇
  1993年   25篇
  1992年   18篇
  1991年   7篇
  1990年   11篇
  1989年   12篇
  1988年   8篇
  1987年   14篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   1篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   6篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   2篇
排序方式: 共有1988条查询结果,搜索用时 359 毫秒
951.
The proximity sensing based on the attenuated total internal reflection (ATIR) is a technique that allows us to control the separation between two planes—the attenuating media surface and dielectric boundary, in the neighborhood of which the total internal reflection (TIR) takes place. This measurement supposes known optical constants of all media. An effect of lateral fringe shift and variations in intensity distribution of the interferometrical signal were observed during the measurements by an angular sheering polarization interferometer. The simple theory here proposed explains these effects. For that reason the relationship between the polarization effects, accompanying the ATIR and the output interferometrical signal had to be taken into account. To explain the variations of interference fringes intensity topography, the evolution of the Stokes parameters as a function of the gap width for Si attenuator is studied numerically.  相似文献   
952.
The electrical properties of semiconductor surfaces have played a decisive role in one of the most important discoveries of the last century, transistors. In the 1940s, the concept of surface states––new electron energy levels characteristic of the surface atoms––was instrumental in the fabrication of the first point-contact transistors, and led to the successful fabrication of field-effect transistors. However, to this day, one property of semiconductor surface states remains poorly understood, both theoretically and experimentally. That is the conduction of electrons or holes directly through the surface states. Since these states are restricted to a region only a few atom layers thick at a crystal surface, any signal from them might be swamped by conduction through the underlying bulk semiconductor crystal, as well as greatly perturbed by steps and other defects at the surface. Yet recent results show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered in their own right as a new class of electronic nanomaterials because the surface states have their own characters different from the underlying bulk states. As microelectronic devices shrink even further, and surface-to-volume ratios increase, surfaces will play an increasingly important role. These new nanomaterials could be crucial in the design of electronic devices in the coming decades, and also could become a platform for studying the physics of a new family of low-dimensional electron systems on nanometre scales.  相似文献   
953.
We investigate the spin Hall magnetoresistance (SMR) in niobium (Nb) attached to Y3Fe5O12 near the superconducting critical temperature (Tc) of Nb. The SMR vanishes after cooling the sample below Tc, and recovers if the temperature is raised. When a magnetic field larger than the critical field of Nb is applied, the SMR re‐emerges with an enhanced magnitude even if the temperature is below Tc. The experimental results demonstrate that the SMR could be completely suppressed by the coupling between superconducting condensation and spin–orbit interaction in superconductors. In addition to the fundamental physics on the charge–spin interactions in superconductors, our work adds a different dimension to superconducting spintronics. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
954.
《Current Applied Physics》2015,15(7):819-828
Magnetic nanowires (NWs) electrodeposited into solid templates are of high interest due to their tunable properties which are required for magnetic recording media and spintronic devices. Here, highly ordered arrays of FeNi NWs with varied lengths (ranging from 2.5 to 12 μm) and diameters (between 45 and 75 nm) were fabricated into anodic aluminum oxide templates using a pulsed ac electrodeposition technique. X-ray diffraction patterns along with energy dispersive spectroscopy indicated the formation of Fe70Ni30 NWs with fcc and bcc alloy phases, being highly textured along the bcc [110] direction. Magnetic properties were studied by hysteresis loop measurements at room temperature and they showed reductions in coercivity and squareness values by increasing length and diameter. Further, magnetic fingerprints of the NWs were characterized using the first-order reversal curve (FORC) analysis. FORC measurements revealed that, with increasing length and diameter from 2.5 to 10 μm and 45–55 nm, respectively, besides an increase in inter-wire magnetostatic interactions, a transition from a single domain (SD) state to a pseudo SD state occurred. Moreover, a multi-domain (MD) state was found for the longest length and diameter. While the irreversible magnetization component of the SD NWs was approximately 100%, the reversible component of MD NWs increased up to 20%.  相似文献   
955.
956.
This paper discusses strain localisation in granular media by presenting experimental, full-field analysis of mechanical tests on sand, both at a continuum level, as well as at the grain scale. At the continuum level, the development of structures of localised strain can be studied. Even at this scale, the characteristic size of the phenomena observed is in the order of a few grains. In the second part of this paper, therefore, the development of shear bands within specimen of different sands is studied at the level of the individual grains, measuring grains kinematics with x-ray tomography. The link between grain angularity and grain rotation within shear bands is shown, allowing a grain-scale explanation of the difference in macroscopic residual stresses for materials with different grain shapes. Finally, rarely described precursors of localisation, emerging well before the stress peak are observed and commented.  相似文献   
957.
《Comptes Rendus Physique》2015,16(5):540-552
Proposed in 1997, the ACES/PHARAO experiment is a space mission in fundamental physics with two atomic clocks on the International Space Station, a network of ultra-stable clocks on the ground, and space-to-ground time transfer systems. The ACES flight instruments are near completion and launch in space is planned for the first half of 2017 for a mission duration of three years. A key element of the satellite payload is a cold-atom clock designed for microgravity environment, PHARAO, operating with laser-cooled cesium atoms. Here we first report on the design and tests of the PHARAO flight model, which is now completed and ready for launch. We then briefly present the status of development of the other instruments of the ACES payload, the Space Hydrogen Maser, the microwave time-transfer system (MWL), and the laser time transfer ELT.  相似文献   
958.
江正仙  崔宝同 《中国物理 B》2015,24(2):20702-020702
This paper investigates the estimation problem for a spatially distributed process described by a partial differential equation with missing measurements.The randomly missing measurements are introduced in order to better reflect the reality in the sensor network.To improve the estimation performance for the spatially distributed process,a network of sensors which are allowed to move within the spatial domain is used.We aim to design an estimator which is used to approximate the distributed process and the mobile trajectories for sensors such that,for all possible missing measurements,the estimation error system is globally asymptotically stable in the mean square sense.By constructing Lyapunov functionals and using inequality analysis,the guidance scheme of every sensor and the convergence of the estimation error system are obtained.Finally,a numerical example is given to verify the effectiveness of the proposed estimator utilizing the proposed guidance scheme for sensors.  相似文献   
959.
Aqueous colloidal forming of magnesium aluminate (MgAl2O4) spinel offers much potential for various applications; however, these advantages are generally offset by the basic nature of the powder and its affinity for hydrolysis. Hydrolysis in the presence of water generally imparts surface chemical changes resulting in the degradation of colloidal stability. In the present study, spinel powders were subjected to thermally assisted surface passivation and evaluated for the effectiveness of preventing hydrolysis through quasielastic neutron scattering (QENS) technique and correlated with rheological measurements. In order to evaluate the extent of hydrolysis, spinel slurries prepared with (SP) and without surface passivation (WSP) were studied by rheological and QENS measurements at regular intervals of time. While WSP slurry exhibited a steep enhancement in viscosity from 1.02 to 19.4 Pa · s and fraction of the elastic intensity from 0.20 to 0.38 for 96 and 200 hours, respectively, a negligible change in viscosity for SP slurries from 0.313 to 0.345 Pa · s and fraction of the elastic intensity from 0.16 to 0.17 for the similar period confirmed the inhibition of hydrolysis, revealing change in surface chemistry due to hydrolysis. Microscopic details as obtained from neutron scattering data revealed that dynamical behavior of water molecules in both the slurries could be described very well by the Singwi–Sjolander model of jump diffusion. Further analysis showed lower diffusivity ~1.82 × 10?5 cm2/sec and higher residence time ~6.39 ps for WSP slurry in comparison with 2.16 × 10?5 cm2/sec and 5.80 ps, complimenting the inhibition of hydrolysis in case of SP slurry.  相似文献   
960.
In the last few years, coal mine methane (CMM) has gained significance as a potential non-conventional gas fuel. The progressive depletion of common fossil fuels reserves and, on the other hand, the positive estimates of CMM resources as a by-product of mining promote this fuel gas as a promising alternative fuel. The increasing importance of its exploitation makes it necessary to check the capability of the present-day models and equations of state for natural gas to predict the thermophysical properties of gases with a considerably different composition, like CMM. In this work, accurate density measurements of a synthetic CMM mixture are reported in the temperature range from (250 to 400) K and pressures up to 15 MPa, as part of the research project EMRP ENG01 of the European Metrology Research Program for the characterization of non-conventional energy gases. Experimental data were compared with the densities calculated with the GERG-2008 equation of state. Relative deviations between experimental and estimated densities were within a 0.2% band at temperatures above 275 K, while data at 250 K as well as at 275 K and pressures above 10 MPa showed higher deviations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号