首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3200篇
  免费   92篇
  国内免费   311篇
化学   2947篇
晶体学   9篇
力学   17篇
综合类   3篇
数学   7篇
物理学   620篇
  2024年   9篇
  2023年   71篇
  2022年   43篇
  2021年   61篇
  2020年   88篇
  2019年   109篇
  2018年   82篇
  2017年   140篇
  2016年   117篇
  2015年   100篇
  2014年   164篇
  2013年   157篇
  2012年   253篇
  2011年   259篇
  2010年   168篇
  2009年   246篇
  2008年   239篇
  2007年   244篇
  2006年   220篇
  2005年   140篇
  2004年   122篇
  2003年   103篇
  2002年   59篇
  2001年   74篇
  2000年   50篇
  1999年   33篇
  1998年   38篇
  1997年   34篇
  1996年   29篇
  1995年   13篇
  1994年   27篇
  1993年   23篇
  1992年   16篇
  1991年   21篇
  1990年   12篇
  1989年   10篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
  1972年   1篇
  1969年   2篇
排序方式: 共有3603条查询结果,搜索用时 0 毫秒
71.
Huan Liang 《中国物理 B》2022,31(10):104702-104702
Thermophoresis and diffusiophoresis respectively refer to the directed drift of suspended particles in solutions with external thermal and chemical gradients, which have been widely used in the manipulation of mesoscopic particles. We here study a phoretic-like motion of a passive colloidal particle immersed in inhomogeneous active baths, where the thermal and chemical gradients are replaced separately by activity and concentration gradients of the active particles. By performing simulations, we show that the passive colloidal particle experiences phoretic-like forces that originate from its interactions with the inhomogeneous active fluid, and thus drifts along the gradient field, leading to an accumulation. The results are similar to the traditional phoretic effects occurring in passive colloidal suspensions, implying that the concepts of thermophoresis and diffusiophoresis could be generalized into active baths.  相似文献   
72.
表面增强拉曼光谱技术对分子具有特异性识别以及快速无损检测的能力,使其在药物检测方面具有重大的潜力。通过贵金属和氮化钛之间协同作用,使复合基底具有较高的SERS性能,提供了一种基于SERS技术的药物检测方法。采用电化学沉积及自组装法,制备出贵金属/氮化钛复合薄膜。研究表明,在复合薄膜中存在面心立方晶型TiN、金属单质Au和Ag三种物相;电子显微镜显示平均粒径分别为90和50 nm的金属Au和Ag颗粒均匀分布在TiN薄膜表面;基底的紫外-可见吸收图谱中出现了贵金属金与银纳米颗粒及TiN薄膜三者的特征等离子体共振吸收峰。以该复合薄膜为SERS基底,对烟酸溶液进行拉曼检测。结果显示,贵金属/氮化钛复合薄膜对烟酸具有显著的SERS效应,最低检测浓度为10-5 mol·L-1,对1 033 cm-1处烟酸拉曼信号强度及浓度取对数,发现两者间呈一定线性关系,其R2为0.969,得益于TiN,Au和Ag之间可发生表面等离子体共振引起电磁场增强,以及电荷转移效应。研究还发现,烟酸通过COO-基团垂直吸附在贵金属/氮化钛基底表面;在酸性环境下,烟酸N原子质子化主要以阳离子N+H(Ⅰ)形式存在;在碱性环境时,主要以阴离子COO-(Ⅲ)形式存在。绞股蓝总甙溶液中模拟烟酸非法添加,该复合基底对其最低的拉曼检测浓度是10-5 mol·L-1,为现场快速检测非法添加药物提供了新途径。  相似文献   
73.
Colloidal noble metal-based nanoparticles are able to catalyze oxidation of chromogenic substrates by H2O2, similarly to peroxidases, even in basic media. However, lack of robust chromogens, which work in high pH impedes their real applications. Herein we demonstrate the applicability of selected catechol derivatives: bromopyrogallol red (BPR) and pyrogallol (PG) as chromogenic substrates for peroxidase-like activity assays, which are capable of working over wide range of pH, covering also basic values. Hyperbranched polyglycidol-stabilized gold nanoparticles (HBPG@AuNPs) were used as model enzyme mimetics. Efficiency of several methods of improving stability of substrates in alkaline media by means of selective suppression of their autoxidation by molecular oxygen was evaluated. In a framework of presented studies the impact of borate anion, applied as complexing agent for PG and BPR, on their stability and reactivity towards oxidation mediated by catalytic AuNPs was investigated. The key role of high concentration of hydrogen peroxide in elimination of non-catalytic oxidation of PG and improvement of optical properties of BPR in alkaline media containing borate was underlined. Described methods of peroxidase-like activity characterization with the use of BPR and PG can become universal tools for characterization of nanozymes, which gain various applications, among others, they are used as catalytic labels in bioassays and biosensors.  相似文献   
74.
We report on the stabilisation of the liquid-crystalline, twist-grain boundary A (TGBA) phase in mixtures of a chiral liquid crystal and surface-functionalised spherical Au nanoparticles (NPs) of 10 nm diameter. The results, obtained by calorimetric, optical, small-angle X-ray and plasmon resonance measurements, demonstrate that a TGBA phase, which is metastable for the pure liquid crystal host, can be effectively stabilised for a 3 K range in the presence of NPs. Moreover, the role of NPs size on the TGBA stabilisation is briefly discussed.  相似文献   
75.
The porosity of 1‐hexanethiol‐functionalised gold nanoparticle films was assessed and utilised as chemiresistor sensors. Electrochemical capacitance measurements showed that the accessibility of electrolytes of different ionic strengths into the pores depended on the thickness of the electric double layer formed. A large variation in capacitance was measured in 0.01–1000 mM NaClO4, implying a wide pore size distribution. The change in morphology of the nanoparticle films upon storage in air, water and ethanol for two weeks was investigated. There was a significant decrease in the electrochemical capacitance at high electrolyte concentrations for the ethanol‐stored films compared to the freshly‐prepared films suggesting a decrease in the number of small pores of radii in the range of 0.3–3 nm. This was further supported by optical topographical measurements where a decrease in the thickness of ethanol‐stored films was observed relative to the freshly‐prepared films. The porous nature of the nanoparticle films was found to have an effect on the chemical sensing behaviour. When used as chemiresistor sensors, for the detection of heptane in water, the ethanol‐stored films provided larger resistance changes and longer response times. This suggests that the more densely packed ethanol‐stored films provided more sites that enabled film swelling, and that diffusion of the analyte occurred through the narrower water‐filled pores. This demonstrates the effect of different storage conditions on film morphology and subsequently sensor response.  相似文献   
76.
77.
In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu2+ through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10−3–10−6 M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments.  相似文献   
78.
79.
Ligands N,N'-tetramethylthiourea and 2-mercapto-1-methyl-imidazole form stable Au(III) complexes [AuCl3(N,N'-tetramethylthiourea)] (1) and [AuCl3(2-mercapto-1-methyl-imidazole)] (2) instead of reducing the Au(III) metal center into Au(I), which would be typical for the attachment of sulfur donors. Compounds 1 and 2 were characterized by spectroscopic methods and by X-ray crystallography. The spectroscopic details were explained by simulation of the UV-Vis spectra via the TD-DFT method. Additionally, computational DFT studies were performed in order to find the reason for the unusual oxidation state in the crystalline materials. The preference for Au(III) can be explained via various weak intra- and intermolecular interactions present in the solid state structures. The nature of the interactions was further investigated by topological charge density analysis via the QTAIM method.  相似文献   
80.
The interaction between two parallel charged plates in ionic solution is a general starting point for studying colloidal complexes. An intuitive expression of the pressure exerted on the plates is usually proposed, which includes an electrostatic plus an osmotic contribution. We present here an explicit and self-consistent derivation of this formula in the only framework of the Poisson–Boltzmann (PB) theory. We also show that, depending on external constraints, the correct thermodynamic potential can differ from the usual PB free energy. For asymmetric, oppositely charged plates, the resulting expression predicts a non-trivial equilibrium position with the plates separated by a finite distance. The depth of this energy minimum is decisive for the stability of the complex. It is therefore crucial to obtain its explicit dependence on the charge densities of the plates and on the ion concentration. Analytic expressions for the position and depth of the energy minimum were derived in 1975 by Ohshima [Colloid Polym. Sci. 253, 150 (1975)] but, surprisingly, these important results seem to have been overlooked. We retrieve these expressions in a simpler formalism, more familiar to the physics community, and give a physical interpretation of the observed behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号