首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   63篇
化学   5篇
晶体学   62篇
数学   64篇
物理学   764篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   8篇
  2012年   7篇
  2011年   8篇
  2010年   37篇
  2009年   216篇
  2008年   191篇
  2007年   133篇
  2006年   79篇
  2005年   17篇
  2004年   4篇
  2003年   18篇
  2002年   27篇
  2001年   21篇
  2000年   9篇
  1999年   19篇
  1998年   15篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   10篇
  1992年   10篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有895条查询结果,搜索用时 15 毫秒
851.
Cheoljun Eom  Woo-Sung Jung  Gabjin Oh 《Physica A》2008,387(21):5219-5224
We investigated financial market data to determine which factors affect information flow between stocks. Two factors, the time dependency and the degree of efficiency, were considered in the analysis of Korean, the Japanese, the Taiwanese, the Canadian, and US market data. We found that the frequency of the significant information decreases as the time interval increases. However, no significant information flow was observed in the time series from which the temporal time correlation was removed. These results indicated that the information flow between stocks evidences time-dependency properties. Furthermore, we discovered that the difference in the degree of efficiency performs a crucial function in determining the direction of the significant information flow.  相似文献   
852.
Previous experiments indicate that an STM (scanning tunnelling microscope) can be used to switch a hydrogen atom at a partially hydrogen-covered Si(100)-2×1 surface, from one Si atom of a Si dimer to a neighbouring, empty Si site [U.J. Quaade et al., Surf. Sci. 415, L1037, 1998]. It has been suggested that the switching occurs via a transient positive ion resonance state. In an earlier paper, we have examined the switching process for the “above threshold” regime when the bias is large enough to directly populate the positive ion resonance. In the present paper we study the “below threshold” regime instead, where the switching is more appropriately modelled as a ladder climbing over the barrier, in the ground electronic state. For this purpose we solve the Liouville–von Neumann equation in Lindblad form, describing a switching H atom on a Si dimer. STM-induced transition rates between vibrational levels are estimated from cluster calculations, assuming contributions both from a dipole and a resonance scattering mechanism. Vibrational relaxation is also included, as well as finite temperature and field effects. The switching rate in a current regime of about 1 to 10 nA scales highly non-linearly with current, and it is found to be governed by vibrational “ladder climbing” and subsequent tunnelling through the top of the ground state barrier. Multi-phonon processes also play a role. As a result of tunnelling, pronounced isotope effects are observed when replacing H with D. It is further argued that resonance-mediated inelastic scattering dominates over dipole excitation, and that the STM switch is stable also at room temperature.  相似文献   
853.
The adsorption of two very different adsorbates, gold and oxygen, induce the formation of a (3 × 1) surface structure on both W(1 1 2) and Mo(1 1 2). In spite of similar adsorbate unit cells, the surface electronic structure, derived from photoemission, exhibits pronounced differences for the two adsorbates. Indeed, both experiment and simulations indicate substantial changes in electronic structures of (1 × 1) and (3 × 1) gold overlayers supported by highly anisotropic (1 1 2) plane. We speculate that (3 × 1) is a favored periodicity in the atomic rearrangement of the (1 1 2) surfaces of molybdenum and tungsten due in part as a result of the initial state band structure of these surfaces.  相似文献   
854.
The growth process of carbon nanotubes (CNTs) under CNT-CNT and CNT-substrate interactions has been observed directly by environmental transmission electron microscopy. Even a free standing CNT occasionally swings during the growth until it touches the substrate. In addition, we show that the growth direction of CNTs changes due to the interaction between CNTs.  相似文献   
855.
We present a new ab initio approach to describe the statistical behavior of long ideal polymer chains near a plane hard wall. Forbidding the solid half-space to the polymer explicitly (by the use of Mayer functions) without any other requirement, we derive and solve an exact integral equation for the partition function G D(r,r′, N) of the ideal chain consisting of N bonds with the ends fixed at the points r and r′ . The expression for G(r,r′, s) is found to be the sum of the commonly accepted Dirichlet result G D(r,r′, N) = G 0(r,r′, N) - G 0(r,r”, N) , where r” is the mirror image of r′ , and a correction. Even though the correction is small for long chains, it provides a non-zero value of the monomer density at the very wall for finite chains, which is consistent with the pressure balance through the depletion layer (so-called wall or contact theorem). A significant correction to the density profile (of magnitude 1/is obtained away from the wall within one coil radius. Implications of the presented approach for other polymer-colloid problems are discussed.  相似文献   
856.
Nanostructured manganese dioxide films were obtained by galvanostatic, pulse and reverse pulse electrodeposition from 0.01 to 0.1 M KMnO4 solutions. The deposition yield was investigated by in situ monitoring the deposit mass using a quartz crystal microbalance (QCM). Obtained films were studied by electron microscopy, X-ray diffraction analysis, energy dispersive spectroscopy, thermogravimetric and differential thermal analysis. The QCM and electron microscopy data were utilized for the investigation of deposition kinetics and film formation mechanism. It was shown that the deposition rate and film microstructure could be changed by variation of deposition conditions. The method allowed the fabrication of dense or porous films. The thickness of dense films was limited to ∼0.1 μm due to the insulating properties of manganese dioxide and film cracking, attributed to drying shrinkage. Porous and crack-free 1-2 μm films were obtained using galvanostatic or reverse pulse deposition from 0.02 M KMnO4 solutions. It was shown that film porosity is beneficial for the charge transfer during deposition and crack prevention in thick films. Moreover, porous nanostructured films showed good capacitive behavior for applications in electrochemical supercapacitors. The porous nanostructured films prepared in the reverse pulse regime showed higher specific capacitance (SC) compared to the SC of the galvanostatic films. The highest SC of 279 F/g in a voltage window of 1 V was obtained in 0.1 M Na2SO4 solutions at a scan rate of 2 mV/s.  相似文献   
857.
We analyze atom-surface magnetic interactions on atom chips where the magnetic trapping potentials are produced by current carrying wires made of electrically anisotropic materials. We discuss a theory for time dependent fluctuations of the magnetic potential, arising from thermal noise originating from the surface. It is shown that using materials with a large electrical anisotropy results in a considerable reduction of heating and decoherence rates of ultra-cold atoms trapped near the surface, of up to several orders of magnitude. The trap loss rate due to spin flips is expected to be significantly reduced upon cooling the surface to low temperatures. In addition, the electrical anisotropy significantly suppresses the amplitude of static spatial potential corrugations due to current scattering within imperfect wires. Also the shape of the corrugation pattern depends on the electrical anisotropy: the preferred angle of the scattered current wave fronts can be varied over a wide range. Materials, fabrication, and experimental issues are discussed, and specific candidate materials are suggested.  相似文献   
858.
A unified S-matrix framework of quantum singular interactions is presented for the comparison of self-adjoint extensions and physical renormalization. For the long-range conformal interaction the two methods are not equivalent, with renormalization acting as selector of a preferred extension and regulator of the unbounded Hamiltonian.  相似文献   
859.
High-molecular-weight heterotelechelic deuteriopolystyrene, NDPSF, possessing an amine functional group at one end of the chain and a fluorocarbon group at the other was tethered to a silicon substrate by its amine functional group. These layers were coated with an unfunctionalised polystyrene matrix, HPS, such that the total film thickness covered a range from 2.2 to 9 times the radius of gyration of NDPSF. The detailed distribution of the polymers after annealing for times much greater than the reptation period of either of the components, was obtained using neutron reflectometry. No evidence for bridging of the two interfaces was found for the thicker films, but the finite concentration of the NDPSF polymer observed for the thinnest films may be due to bridging since the energy gain of the fluorocarbon end is just greater than the loss due to configurational entropy losses. A linear increase in the ellipsometric thickness of the excess of NDPSF at the substrate was discovered and we attribute this to the NDPSF slowly being leached out of the layer initially at the substrate followed by diffusion into the bulk of the film. The concentration profiles obtained are consistent with hindered relaxation of the large NDPSF molecules, when they are tethered at the substrate or at the vacuum surface. Received 21 August 2001 and Received in final form 7 January 2002  相似文献   
860.
A detailed study of the La1−xCaxCoO3 perovskites surface by XPS was carried out since this is a potentially useful tool to identify the oxygen species involved in the catalytic reaction and discriminate them. Mainly, the concentration of surface oxygen vacancies (λ′) can be estimated from the XPS atomic ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号