首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   728篇
  免费   14篇
  国内免费   24篇
化学   532篇
晶体学   45篇
力学   4篇
综合类   1篇
物理学   184篇
  2023年   10篇
  2022年   4篇
  2021年   3篇
  2020年   10篇
  2019年   8篇
  2018年   11篇
  2017年   18篇
  2016年   11篇
  2015年   8篇
  2014年   7篇
  2013年   26篇
  2012年   21篇
  2011年   30篇
  2010年   43篇
  2009年   43篇
  2008年   41篇
  2007年   45篇
  2006年   54篇
  2005年   30篇
  2004年   44篇
  2003年   37篇
  2002年   27篇
  2001年   39篇
  2000年   38篇
  1999年   37篇
  1998年   22篇
  1997年   17篇
  1996年   9篇
  1995年   9篇
  1994年   13篇
  1993年   8篇
  1992年   7篇
  1991年   10篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1981年   4篇
  1980年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有766条查询结果,搜索用时 31 毫秒
761.
GaAs nanowires (NWs) are grown on GaAs (1 1 1) B substrates in a molecular beam epitaxy system, by Au-assisted vapor–liquid–solid growth. We compare the characteristics of NWs elaborated with As2 or As4 molecules. In a wide range of growth temperatures, As4 leads to growth rates twice faster than As2. The shape of the NWs also depends on the arsenic species: with As4, regular rods can be obtained, while pencil-like shape results from growth with As2. From the analysis of the incoming fluxes, which contributes to the NWs formation, we conclude that the diffusion length of Ga adatoms along the NW sidewalls is smaller under As2 flux as compared to that under As4 flux. It follows that As2 flux is favourable to the formation of radial heterostructures, whereas As4 flux is preferable to maintain pure axial growth.  相似文献   
762.
GaN films were grown by metal organic chemical vapor deposition on TaC substrates that were created by pulsed laser deposition of TaC onto (0 0 0 1) SiC substrates at ∼1000 °C. This was done to determine if good quality TaC films could be grown, and if good quality GaN films could be grown on this closely lattice matched to GaN, conductive material. This was done by depositing the TaC on on-axis and 3° or 8° off-axis (0 0 0 1) SiC at temperatures ranging from 950 to 1200 °C, and examining them using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The GaN films were grown on as-deposited TaC films, and films annealed at 1200, 1400, or 1600 °C, and examined using the same techniques. The TaC films were polycrystalline with a slight (1 1 1) texture, and the grains were ∼200 nm in diameter. Films grown on-axis were found to be of higher quality than those grown on off-axis substrates, but the latter could be improved to a comparable quality by annealing them at 1200–1600 °C for 30 min. TaC films deposited at temperatures above 1000 °C were found to react with the SiC. GaN films could be deposited onto the TaC when the surface was nitrided with NH3 for 3 min at 1100 °C and the low temperature buffer layer was AlN. However, the GaN did not nucleate easily on the TaC film, and the crystallites did not have the desired (0 0 0 1) preferred orientation. They were ∼10 times larger than those typically seen in films grown on SiC or sapphire. Also the etch pit concentration in the GaN films grown on the TaC was more than 2 orders of magnitude less than it was for growth on the SiC.  相似文献   
763.
Liquid GaPt catalysts with Pt concentrations as low as 1×10−4 atomic % have recently been identified as highly active for the oxidation of methanol and pyrogallol under mild reaction conditions. However, almost nothing is known about how liquid state catalysts support these significant improvements in activity. Here, ab initio molecular dynamics simulations are employed to examine GaPt catalysts in isolation and interacting with adsorbates. We find that persistent geometric features can exist in the liquid state, given the correct environment. We postulate that the Pt dopant may not be limited to direct involvement in catalysis of reactions, but rather that its presence can also enable Ga atoms to become catalytically active.  相似文献   
764.
We report phosphinidenes (PR) stabilized by an intramolecular frustrated Lewis pair (FLP) chelate. These adducts include the parent phosphinidene, PH, which is accessed via thermolysis of coordinated HPCO. The reported FLP-PH species acts as a springboard to other phosphorus-containing compounds, such as FLP-adducts of diphosphorus (P2) and InP3. Our new adducts participate in thermal- or light-induced phosphinidene elimination (of both PH and PR, R=organic group), transfer P2 units to an organic substrate, and yield the useful semiconductor InP at only 110 °C from solution.  相似文献   
765.
Environmentally sustainable and selective conversion of methane to valuable chemicals under ambient conditions is pivotal for the development of next-generation photocatalytic technology. However, due to the lack of microscopic knowledge about non-thermal methane conversion, controlling and modulating photocatalytic oxidation processes driven by photogenerated holes remain a challenge. Here, we report novel function of metal cocatalysts to accept photogenerated holes and dominate selectivity of methane oxidation, which is clearly beyond the conventional concept in photocatalysis that the metal cocatalysts loaded on the surfaces of semiconductor photocatalysts mostly capture photogenerated electrons and dominate reduction reactions exclusively. The novel photocatalytic role of metal cocatalysts was verified by operando molecular spectroscopy combined with real-time mass spectrometry for metal-loaded Ga2O3 model photocatalysts under methane and water vapor at ambient temperature and pressure. Our concept of metal cocatalysts that work as active sites for both photocatalytic oxidation and reduction provides a new understanding of photocatalysis and a solid basis for controlling non-thermal redox reactions by metal-cocatalyst engineering.  相似文献   
766.
Tetrafluoromethane (CF4), the simplest perfluorocarbon (PFC), has the potential to exacerbate global warming. Catalytic hydrolysis is a viable method to degrade CF4, but fluorine poisoning severely restricts both the catalytic performance and catalyst lifetime. In this study, Ga is introduced to effectively assists the defluorination of poisoned Al active sites, leading to highly efficient CF4 decomposition at 600 °C with a catalytic lifetime exceeding 1,000 hours. 27Al and 71Ga magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) showed that the introduced Ga exists as tetracoordinated Ga sites (GaIV), which readily dissociate water to form Ga−OH. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density function theory (DFT) calculations confirmed that Ga−OH assists the defluorination of poisoned Al active sites via a dehydration-like process. As a result, the Ga/Al2O3 catalyst achieved 100 % CF4 decomposition keeping an ultra-long catalytic lifetime and outperforming reported results. This work proposes a new approach for efficient and long-term CF4 decomposition by promoting the regeneration of active sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号