首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   8篇
  国内免费   4篇
化学   193篇
物理学   15篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   11篇
  2012年   4篇
  2011年   13篇
  2010年   13篇
  2009年   21篇
  2008年   13篇
  2007年   20篇
  2006年   9篇
  2005年   11篇
  2004年   10篇
  2003年   12篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
201.
In the acetylenic aldehyde oximes with substituents containing silicon and germanium, the 13C NMR signal of the C‐2 carbon of triple bond is shifted by 3.5 ppm to lower frequency and that of the C‐3 carbon is moved by 7 ppm to higher frequency on going from E to Z isomer. A greater low‐frequency effect of 5.5 ppm on the C‐2 carbon signal and a greater high‐frequency effect of 11 ppm on the C‐3 carbon signal are observed in the analogous acetylenic ketone oximes. The carbon chemical shift of the C?N bond is larger by 4 ppm in E isomer relative to Z isomer for the aldehyde and ketone oximes. The 29Si chemical shifts in the silicon containing acetylenic aldehyde and ketone oximes are almost the same for the diverse isomers. The trends in changes of the measured chemical shifts are well reproduced by the gauge‐including atomic orbital (GIAO) calculations of the 13C and 29Si shielding constants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
202.
This paper compares the absolute shieldings obtained by gauge‐including‐projected‐augmented‐wave (GIPAW) to those obtained by gauge‐invariant atomic orbital/Becke, 3‐parameter, Lee‐Yang‐Parr (GIAO/B3LYP)/6–311++G(d,p)‐polarizable continuum model (PCM, dimethyl sulfoxide) for nine benzazoles (benzimidazoles, indazoles, and benzotriazoles) recorded in the solid‐state. Three nuclei were explored, 13C, 15N, and 19F, and the gauge‐including‐projected‐augmented‐wave approach only proved better for 15N MAS NMR.  相似文献   
203.
17O NMR shieldings of 3‐substituted(X)bicyclo[1.1.1]pentan‐1‐ols ( 1 , Y = OH), 4‐substituted(X)bicyclo[2.2.2]octan‐1‐ols ( 2 , Y = OH), 4‐substituted(X)‐bicyclo[2.2.1]heptan‐1‐ols ( 3 , Y = OH), 4‐substituted(X)‐cuban‐1‐ols ( 4 , Y = OH) and exo‐ and endo‐ 6‐substituted(X)exo‐bicyclo[2.2.1]heptan‐2‐ols ( 5 and 6 , Y = OH, respectively), as well as their conjugate bases ( 1 – 6 , Y = O?), for a set of substituents (X = H, NO2, CN, NC, CF3, COOH, F, Cl, OH, NH2, CH3, SiMe3, Li, O?, and NH) covering a wide range of electronic substituent effects were calculated using the DFT‐GIAO theoretical model at the B3LYP/6‐311 + G(2d, p) level of theory. By means of natural bond orbital (NBO) analysis various molecular parameters were obtained from the optimized geometries. Linear regression analysis was employed to explore the relationship between the calculated 17O SCS and polar field and group electronegativity substituent constants (σF and σχ, respectively) and also the NBO derived molecular parameters (oxygen natural charge, Qn, occupation numbers of the oxygen lone pairs, no, and occupancy of the C? O antibonding orbital, σ*CO(occup)). In the case of the alcohols ( 1 – 6 , Y = OH) the 17O SCS appear to be governed predominantly by the σχ effect of the substituent. Furthermore, the key determining NBO parameters appear to be no and σ*CO(occup). Unlike the alcohols, the calculated 17O SCS of the conjugate bases ( 1 – 6 , Y = O?), except for system 1 , do not respond systematically to the electronic effects of the substituents. An analysis of the SCS of 1 (Y = O?) raises a significant conundrum with respect to their origin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
204.
Conformation of N-acetyl-(E)-dehydrophenylalanine N', N'-dimethylamide (Ac-(E)-ΔPhe-NMe(2)) in solution, a member of (E)-α, β-dehydroamino acids, was studied by NMR and infrared spectroscopy and the results were compared with those obtained for (Z) isomer. To support the spectroscopic interpretation, the Φ, Ψ potential energy surfaces were calculated at the MP2/6-31 + G(d,p) level of theory in chloroform solution modeled by the self-consistent reaction field-polarizable continuum model method. All minima were fully optimized by the MP2 method and their relative stabilities were analyzed in terms of π-conjugation, internal H-bonds and dipole interactions between carbonyl groups. The obtained NMR spectral features were compared with theoretical nuclear magnetic shieldings, calculated using Gauge Independent Atomic Orbitals (GIAO) approach and rescaled to theoretical chemical shifts using benzene as reference. The calculated indirect nuclear spin-spin coupling constants were compared with available experimental parameters.  相似文献   
205.
The electronic structures and properties of the fluorinated arsabenzenes series have been investigated using the basis set 6–311+G(d,p) and hybrid density functional theory. The basic measures of aromatic character derived from molecular orbitals and magnetic criteria (anisotropic susceptibilities and nucleus-independent chemical shifts) are considered. The energy criteria suggest that the F3, F36, H36, and H3 isomers are the most stable isomers in the mono-, di-, tri-, and tetrafluorinated species, respectively. Analysis of χaniso and the HOMO-LUMO gaps showed that these were not compatible with NICS data. The NICS values show that aromaticity is greater in the fluorinated derivatives.  相似文献   
206.
In the 1H NMR spectra of the 1‐vinylpyrroles with amino‐ and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one‐bond 1J(Cβ,HB) coupling constant is surprisingly greater than the 1J(Cβ,HA) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π‐system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C–HB???N hydrogen bonding in the s‐cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C–HB???S hydrogen bonding in the s‐cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C–H???N and C–H???S hydrogen bonding. Therefore, an unusual high‐frequency shift of the HB signal and the increase in the 1J(Cβ,HB) coupling constant can be explained by the effects of hydrogen bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
207.
The proton nuclear magnetic resonance (NMR) spectra of butane‐1,4‐diol, pentane‐1,4‐diol, (S,S)‐hexane‐2,5‐diol, 2,5‐dimethylhexane‐2,5‐diol and cyclohexane‐1,4‐diols (cis and trans) in benzene and some other solvents have been analysed. The conformer distribution and the NMR shifts of these diols in benzene have been computed on the basis of the density functional theory, the solvent being included by means of the integral‐equation‐formalism polarizable continuum model implemented in Gaussian 09. Relative Gibbs energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6‐311+G(d,p) level and NMR shifts by the gauge‐including atomic orbital method with the PBE0/6‐311+G(d,p) geometry and the cc‐pVTZ basis set. Vicinal three‐bond coupling constants for the acyclic diols are calculated from the relative conformer populations, the geometries and generalized Karplus equations developed by Altona's group; these correlate well with the experimental values. The solvent dependence of coupling constants for butane‐1,4‐diol is attributed to conformational change. Coupling constants for the rigid cyclohexane‐1,4‐diols do not change with solvent and are readily explained in terms of their geometries. The NMR shifts of hydrogen‐bonded protons in individual conformers of alkane‐1,n‐diols show a very rough correlation with the OH···OH distances. The computed overall NMR shifts for CH protons in 1,2‐diols, 1,3‐diols and 1,4‐diols are systematically high but correlate very well with the experimental values, with a gradient of 1.07 ± 0.01; those for OH protons correlate less well. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
208.
Steviol glycosides were subjected to bacteria present in a soil sample collected from a Stevia plantation in Paraguay. During the incubation experiments, next to the aglycon steviol, steviol degradation products were also formed. X-ray analysis and NMR methods in combination with chemical synthesis and GIAO NMR calculations were used to fully characterize the structure of these compounds as a tricyclic ketone and the corresponding reduced form. They were nicknamed monicanone and monicanol. The latter has the (S)-configuration at the alcohol site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号