首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
  国内免费   23篇
化学   74篇
物理学   11篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1985年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
11.
Because fossil fuels are continuously depleted, valorization of biomass into valuable liquid products and chemicals is of great significance yet it remains challenging. Among many biomass-derived products, lactic acid is one of the most important renewable monomers for preparing the degradable polymer polylactic acid. The use of raw biomass to produce lactic acid through catalytic conversion is an attractive approach. In this work, the catalytic reaction performance and mechanism of different Lewis acids (Y3+, Sc3+, and Al3+) for the production of lactic acid from cellulose were investigated in detail by isotopic nuclear magnetic resonance (NMR) and mass spectrometry. The production of lactic acid from cellulose includes tandem and competing reactions. The order of catalytic activity for the one-pot conversion of cellulose into lactic acid is as follows: Y3+ > Al3+ > Sc3+. The main tandem reactions involve the hydrolysis of cellulose into glucose, the isomerization of glucose into fructose (the order of catalytic activity, the same below: Y3+ > Al3+, Y3+ > Sc3+), the cleavage of fructose via a retro-aldol reaction to glyceraldehyde (GLY) and 1, 3-dihydroxyacetone (DHA) (Sc3+ > Y3+ > Al3+), and the conversion of DHA or GLY to the final product lactic acid (Al3+ > Y3+ > Sc3+). It was found that the process of glucose isomerization to fructose was the key step to the final selectivity of the tandem reaction of cellulose conversion to lactic acid, and it was clarified that the production of lactic acid from DHA underwent a keto-enol (K-E) tautomerization process rather than a classical 1, 2-shift process. First, DHA was transformed into GLY via the isomerization process, then the adjacent hydroxyl group of GLY was removed in the form of water to produce an α, β-unsaturated species. After that, the α, β-unsaturated species underwent K-E tautomerization to generate unsaturated aldehyde-ketone intermediates. Meanwhile, a molecule of water was added to aldehyde-ketone intermediates to obtain a diol product, the hydrogen atom at the methine position was transferred and the lactic acid was finally obtained through the K-E tautomerization process. The in-depth understanding of the reaction mechanism presented in this work will help to design more selective catalysts for cellulose conversion into value-added oxygen-containing small molecule chemicals.   相似文献   
12.
A new convenient colorimetric sensor for fructose based on anti-aggregation of citrate-capped gold nanoparticles(Au NPs) is presented. 4-Mercaptophenylboronic acid(MPBA) induces the aggregation of Au NPs, leading to a color change from red to blue. Fructose as a potent competitor has strong affinity for MPBA and a borate ester is formed between MPBA and fructose. There is an obvious color change from blue to red with increasing the concentration of fructose. The anti-aggregation effect of fructose on Au NPs was seen by the naked eye and monitored by UV–vis spectra. Our results showed that the absorbance ratio(A_(519)/A_(640)) was linear with fructose concentration in the range of 0.032–0.96 μmol/L(R~2= 0.996), with a low detection limit of 0.01 μmol/L(S/N = 3). Notably, a highly selective recognition of fructose was shown against other monosaccharide and disaccharide(glucose, mannose, galactose,lactose and saccharose). With anti-aggregation assays higher selectivity is achievable. The results of this work provide a rapid method for evaluating the quantitative analysis of fructose in human plasma at physiologically meaningful concentrations and at neutral pH. The proposed procedure can be used as an efficient method for the precise and accurate determination of fructose.  相似文献   
13.
A continuous separation system such as a simulated moving‐bed process requires adsorption data with precise equilibrium and kinetic model parameters of a single chromatographic column. The adsorption of glucose and fructose in a fixed‐bed chromatographic column was investigated to determine the competition effect of each component resulting from their initial molar ratios. The model parameters including bed porosity and axial dispersion coefficient were determined using the moment analysis method. The equilibrium isotherm parameters were estimated by conducting experiments at various molar ratios and initial sugar concentrations. The parameters obtained were then used for the simulation of dynamic breakthrough curves of glucose and fructose. The equilibrium isotherms revealed that the linear adsorption pattern provided good prediction for each molar ratio using the Henry equation. In addition, the modified Langmuir model was proposed to account for the competitive adsorption, due to the cooperative competition effect whereby glucose was promoted to the active sites by fructose to a greater degree than vice versa. A good agreement between the experimental and numerical data of the adsorption time profiles was also observed.  相似文献   
14.
建议了一种E .COSY型的1 3C 1 H相关实验 .在相应的1 3C 1 H相关谱中 ,31 P核对1 3C ,1 H核的被动偶合给出E .COSY型的谱峰裂分 ,可用于准确测定含磷化合物中的31 P 1 H和31 P 1 3C偶合常数及其相对符号 .测定了果糖 1 ,6 二磷酸根离子的31 P 1 H和31 P 1 3C偶合常数  相似文献   
15.
A low, but significant, fraction of the carbohydrate portion of herbaceous biomass may be composed of fructose/fructosyl-containing components (“fructose equivalents”); such carbohydrates include sucrose, fructooligosaccharides, and fructans. Standard methods used for the quantification of structural-carbohydrate-derived neutral monosaccharide equivalents in biomass are not particularly well suited for the quantification of fructose equivalents due to the inherent instability of fructose in conditions commonly used for hemicellulose/cellulose hydrolysis (>80% degradation of fructose standards treated at 4% sulfuric acid, 121°C, 1 h). Alternative time, temperature, and acid concentration combinations for fructan hydrolysis were considered using model fructans (inulin, β-2,1, and levan, β-2,6) and a grass seed straw (tall fescue, Festuca arundinacea) as representative feedstocks. The instability of fructose, relative to glucose and xylose, at higher acid/temperature combinations is demonstrated, all rates of fructose degradation being acid and temperature dependent. Fructans are shown to be completely hydrolyzed at acid concentrations well below that used for the structural carbohydrates, as low as 0.2%, at 121°C for 1 h. Lower temperatures are also shown to be effective, with corresponding adjustments in acid concentration and time. Thus, fructans can be effectively hydrolyzed under conditions where fructose degradation is maintained below 10%. Hydrolysis of the β-2,1 fructans at temperatures ≥50°C, at all conditions consistent with complete hydrolysis, appears to generate difructose dianhydrides. These same compounds were not detected upon hydrolysis of levan, sucrose, or straw components. It is suggested that fructan hydrolysis conditions be chosen such that hydrolysis goes to completion; fructose degradation is minimized, and difructose dianhydride production is accounted for.  相似文献   
16.
The direct electron transfer reaction of fructose dehydrogenase (FDH) from Gluconobacter sp. on alkanethiol-modified silver nanoparticles (AgNPs) was examined using cyclic voltammetry and surface-enhanced resonance Raman scattering (SERRS). Using cyclic voltammetry, catalytic oxidation currents (based on the direct electron transfer reaction of FDH) were observed from a potential of approximately −100 mV (vs. Ag/AgCl, 3 M NaCl) in the presence of d-fructose, without a mediator. A comparison of the SERRS spectra and the resonance Raman spectra of FDH in solution indicated that the heme c site retained its six-coordinated low-spin heme after immobilization. Moreover, SERRS also demonstrated that the heme c of the adsorbed FDH was the electron transfer site within the enzyme.  相似文献   
17.
Simulated moving bed (SMB) processes have been widely used in the sugar industries with ion‐exchange resin as a stationary phase. D ‐Psicose, a rare monosaccharide known as a valuable pharmaceutical substrate, was synthesized by the enzymatic conversion from D ‐fructose. The SMB process was adopted to separate D ‐psicose from D ‐fructose. Before the SMB experiment, the reaction mixture including D ‐psicose and D ‐fructose was treated by a deashing process to remove contaminants, such as buffers, proteins, and other organic materials. Four columns packed with Dowex 50WX4‐Ca2+ (200–400 mesh) ion‐exchange resins were used in the four‐zone SMB. Single‐step frontal analysis was performed to estimate the isotherm parameters of each monosaccharide. The operating conditions of the SMB process were determined based on the Equilibrium Theory. According to the simulation of the SMB process, the purity and yield of extract product (D ‐psicose) achieved were 99.04 and 97.46%, respectively and those of raffinate product (D ‐fructose) were 99.06 and 99.53%, respectively. Under the optimized operating condition, complete separation (extract purity = 99.36%, raffinate purity = 99.67%) was achieved experimentally.  相似文献   
18.
机体内果糖的自氧化过程中会产生多种自由基, 并最终转化为羟自由基, 苯甲酸钠可捕获羟自由基生成具有强荧光信号的羟基苯甲酸钠. 本文采用荧光光度法考察了影响果糖自氧化体系的各种因素, 建立了果糖自氧化产生羟自由基体系. 实验结果表明, 在果糖浓度为8.00 mmol/L, CuSO4浓度为20.0 μmol/L, 苯甲酸钠浓度为24.0 mmol/L, pH=7.4, 温度为37℃及反应时间为24 h的条件下, 果糖自氧化体系最终可产生19.27 μmol/L的羟自由基. 抗氧化剂的存在可清除果糖自氧化过程中产生的自由基, 使最终生成的羟自由基的量减少, 从而导致生成的羟基苯甲酸钠减少, 荧光信号减弱, 由此建立了基于果糖自氧化体系的抗氧化剂筛选方法. 利用本评价体系考察了抗氧化剂盐酸小檗碱和阿魏酸的抗氧化能力, 实验结果表明, 中药标准品盐酸小檗碱和阿魏酸均能有效清除果糖自氧化体系产生的羟自由基, 其IC50值分别为0.023和0.036 mmol/L.  相似文献   
19.
The MgO/NaY catalysts prepared by impregnation method were used for the conversion of glucose to fructose in water medium.The effects of MgO loading,reaction temperature,glucose concentration and reaction time on the catalytic performance for the reaction were studied.The activity testing results indicated that fructose could be generated effectively by controlling the components of the catalyst and reaction conditions.The maximal fructose yield of 33.8% with the selectivity of 67.3% was achieved over the 10% MgO/NaY catalyst at 100 ℃ for 2 h.Moreover,the catalysts were characterized by XRD,BET,and CO2-TPD techniques.The structural property of NaY with higher surface area facilitated glucose conversion,and the modulated basicity of the catalyst with MgO addition contributed to the formation of fructose in the tautomerization of aldose to ketose.  相似文献   
20.
Two 3-[2-(boronophenyl)benzoxazol-5-yl]alanine derivatives were synthesized and their potential application as fluorescent monosaccharide sensors was studied. It was found that both non-proteinogenic amino acids bound glucose and fructose at physiological pH, however, the latter much stronger. As a result they are selective sensors for fructose. Moreover, one of them (3-[2-(3-boronophenyl)benzoxazol-5-yl]alanine methyl ester) can be used to quickly distinguish, which monosaccharide is present in the solution because of the different character of fluorescence intensity changes (increase in the presence of fructose and decrease in the presence of glucose).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号