首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   569篇
  免费   149篇
  国内免费   67篇
化学   199篇
晶体学   34篇
力学   30篇
数学   3篇
物理学   519篇
  2024年   4篇
  2023年   21篇
  2022年   37篇
  2021年   30篇
  2020年   29篇
  2019年   36篇
  2018年   27篇
  2017年   33篇
  2016年   33篇
  2015年   18篇
  2014年   31篇
  2013年   70篇
  2012年   52篇
  2011年   57篇
  2010年   30篇
  2009年   38篇
  2008年   30篇
  2007年   51篇
  2006年   31篇
  2005年   34篇
  2004年   21篇
  2003年   5篇
  2002年   10篇
  2001年   16篇
  2000年   10篇
  1999年   6篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1993年   2篇
  1992年   7篇
  1990年   1篇
  1973年   1篇
排序方式: 共有785条查询结果,搜索用时 0 毫秒
61.
半导体量子电子和光电子器件   总被引:6,自引:0,他引:6  
傅英  徐文兰  陆卫 《物理学进展》2001,21(3):255-277
本阐述了半导体异质结构电子的量子特性,如电子波输运,库仑阻塞效应等,介绍了几种新颖,典型的量子电子器件和量子光电子器件的物理模型和基本原理,这些器件包括了单电子晶体管,共振隧穿二极管,高电子迁移率晶体管,δ掺杂场效应晶体管,量子点元胞自动机,量子阱红外探测器,埋沟异质结半导体激光器,量子级联激光器等,给出了作在半导体量子器件物理方面的最新研究结果。  相似文献   
62.
Abstract

A helium pressure appparatus for diode laser studies up to 1.4 GPa at 77–300 K has been developed. DH lasers with AlxGa1-xAsySb1-y active layers (x=0-0.05) lattice-matched to GaSb substrates have been investigated. It has been shown that in lasers with x,y=0 pressure dependences of the threshold current density (Jth) and the average electron lifetime at the threshold (τ) measured at 80 K depend strongly on the quadratic recombination of Lc 6 electrons, the characteristic coefficient being 1.5×10?11 cm3s?1. The pressure-composition equivalence coefficient dx/dP=2.2×10?10 Pa?1 has been obtained for the lowest temperatures used.  相似文献   
63.
《Physics letters. A》2020,384(36):126917
Ionization energy theory is exploited to predict the changes to atomic polarizability for both anions and cations, the polarization in doped titanates and the energy gap in III–V and II–VI semiconductors. We then extend the above analysis to discuss the physics of metallic and superconducting phases in the recently discovered superconducting nickelates. In doing so, we are able to prove the existence of Ni2+ cations and oxygen vacancy in the metallic normal state of nickelates. We find that the normal state resistivity of the nickelates follows exactly as predicted by the ionization energy theory. Quantitative estimates are also given for the concentrations of Ni2+ and oxygen vacancy in superconducting nickelates.  相似文献   
64.
《Current Applied Physics》2020,20(11):1222-1225
The gate induced drain leakage (GIDL) effect in negative capacitance (NC) FinFET is investigated. A Landau–Ginzburg–Devonshire equation (which considers the polarization gradient in ferroelectric material) is used to estimate the characteristics of the NC FinFET. Specifically, metal-ferroelectric-metal-insulator-semiconductor (MFMIS) and metal-ferroelectric-insulator-semiconductor (MFIS) NC FinFETs are compared, in order to figure out the effect of the internal metal layer on the GIDL effect. To analyze the impact of the polarization gradient on the GIDL effect in NC FinFET, a polarization gradient coefficient is varied. For MFMIS, the polarization gradient doesn't significantly affect the device performance. The subthreshold swing improves but the GIDL effect deteriorates because of the “uniform” NC effect in channel region. For MFIS, the device performance is explicitly affected by the polarization gradient. Smaller polarization gradients result in non-uniform NC effect in channel region, resulting in severe GIDL effects. On the other hand, higher polarization gradients alleviate GIDL effects.  相似文献   
65.
In this article, Z-scheme NiO/α-MoO3 p-n heterojunction is successfully synthesized by a facile hydrothermal route. The phase and nanostructures are researched through a series of characterizations, such as XRD, SEM, TEM, EDX, XPS and DRS. It is confirmed that the NiO nanoparticles are deposited homogeneously on one dimensional α-MoO3 nanobelts and p-n heterojuction is constructed at the interface of α-MoO3 and NiO. Photocatalytic activity of the as-synthesized photocatalysts is investigated by photodegradation of methylene blue (MB) under simulated solar light irradiation. Compared with bare α-MoO3, the NiO/α-MoO3 p-n heterojunction exhibits significantly improved photocatalytic activity and photostability for MB degradation. The improvement in the photocatalytic performance can be attributed to the optimization of the charge transport pathway offered by Z-scheme heterojunctions, which can promote the effective separation of electron-hole pairs. The results indicate that Z-scheme NiO/α-MoO3 p-n heterojunction is a novel and efficient photocatalyst with potential application for the removal of organic contaminant in wastewater.  相似文献   
66.
Tetragonal tungsten bronze (TTB) films have been synthesised on Pt(111)/TiO2/SiO2/Si substrates from Ba2LnFeNb4O15 ceramics (Ln = La, Nd, Eu) by RF magnetron sputtering. X-ray diffraction measurements evidenced the multi-oriented nature of films with some degrees of preferential orientation along (111). The dependence of the dielectric properties on temperature and frequency has been investigated. The dielectric properties of the films are similar to those of the bulk, i.e., ε ∼150 and σ ∼10−6 Ω−1 cm−1 at 1 MHz and room temperature. The films exhibit two dielectric anomalies which are attributed to Maxwell Wagner polarization mechanism and relaxor behaviour. Both anomalies are sensitive to post-annealing under oxygen atmosphere and their activation energies are similar Ea ∼0.30 eV. They are explained in terms of electrically heterogeneous contributions in the films.  相似文献   
67.
CaFe2O4/MgFe2O4 nanowires with heterostructure had been successfully synthesized by electrospinning method. The obtained samples were systematically characterized by scanning electron microscopy (SEM), X‐Ray diffraction (XRD), UV–Vis diffuse reflectance spectra (UV‐Vis DR) and Environment scanning electron microscopy (ESEM). The novel CaFe2O4/MgFe2O4 nanowires exhibit an enhanced photocatalytic activity for degrading of tetracycline (TC) under visible light. Compared with bare CaFe2O4 or MgFe2O4 samples, the prepared CaFe2O4/MgFe2O4 (Ca:Mg:Fe = 3:2:10) composited nanowires show the best photocatalytic performance with a degradation efficiency of 40% after 150 min reaction time. This enhancement is attributed to the heterostructure of CaFe2O4/MgFe2O4 nanowires, which effectively repress the recombination of photo‐generated electrons and holes. Based on heterostructure and energy band positions, the enhancement of mechanism under visible‐light enhances the photocatalytic activity.  相似文献   
68.
This study describes the preparation of graphitic carbon nitride (g-C3N4), hematite (α-Fe2O3), and their g-C3N4/α-Fe2O3 heterostructure for the photocatalytic removal of methyl orange (MO) under visible light illumination. The facile hydrothermal approach was utilized for the preparation of the nanomaterials. Powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) were carried out to study the physiochemical and optoelectronic properties of all the synthesized photocatalysts. Based on the X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance (DRS) results, an energy level diagram vs. SHE was established. The acquired results indicated that the nanocomposite exhibited a type-II heterojunction and degraded the MO dye by 97%. The degradation ability of the nanocomposite was higher than that of pristine g-C3N4 (41%) and α-Fe2O3 (30%) photocatalysts under 300 min of light irradiation. The formation of a type-II heterostructure with desirable band alignment and band edge positions for efficient interfacial charge carrier separation along with a larger specific surface area was collectively responsible for the higher photocatalytic efficiency of the g-C3N4/α-Fe2O3 nanocomposite. The mechanism of the nanocomposite was also studied through results obtained from UV-vis and XPS analyses. A reactive species trapping experiment confirmed the involvement of the superoxide radical anion (O2•−) as the key reactive oxygen species for MO removal. The degradation kinetics were also monitored, and the reaction was observed to be pseudo-first order. Moreover, the sustainability of the photocatalyst was also investigated.  相似文献   
69.
Within the framework of the effective-mass approximation, the exciton states and interband optical transitions in InxGa1−xN/GaN strained quantum dot (QD) nanowire heterostructures are investigated using a variational method, in which the important built-in electric field (BEF) effects, dielectric-constant mismatch and three-dimensional confinement of the electron and hole in InxGa1−xN QDs are considered. We find that the strong BEF gives rise to an obvious reduction of the effective band gap of QDs and leads to a remarkable electron-hole spatial separation. The BEF, QD height and radius, and dielectric mismatch effects have a significant influence on exciton binding energy, electron interband optical transitions, and the exciton oscillator strength.  相似文献   
70.
Flower-like shaped Bi12TiO20 (Bismuth Titanate)/g-C3N4 (graphite-like carbon nitride) heterojunction was prepared through hydrothermal and sonification methods for the degradation of organic pollutants by visible-light irradiation. The preparation process, chemical structures, and the mechanism of photocatalytic enhancement of the heterostructures were studied systematically. Under visible-light irradiation, the novel flower-like shaped Bi12TiO20/g-C3N4 heterojunction demonstrates prominent activities for the degradation of rhodamine B and p-nitrophenol, with the introduction of flower-like shaped Bi12TiO20 into g-C3N4 composites greatly increasing the activity of pure g-C3N4. This activity enhancement for the heterojunction could be mainly attributed to its low recombination speed of electron–hole pairs, high adsorption ability of organic pollutants, and better optical absorption ability. Moreover, in the visible-light system of Bi12TiO20/g-C3N4, OH also contributed to the degradation of pollutants, which may explain the enhanced photocatalytic activity after the introduction of Bi12TiO20, as OH is inactive in pure g-C3N4. Furthermore, 10 wt.% Bi12TiO20/g-C3N4 showed not only high activity but also good stability for degradation of aqueous organic pollutants, implying potential applications prospect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号