首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
化学   2篇
物理学   46篇
  2010年   1篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2002年   1篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有48条查询结果,搜索用时 0 毫秒
41.
The Green’s function method in the Quasiparticle Time Blocking Approximation is applied to nuclear excitations in 132Sn and 208Pb. The calculations are performed self-consistently using a Skyrme interaction. The method combines the conventional RPA with an exact single-particle continuum treatment and considers in a consistent way the particle-phonon coupling. We reproduce not only the experimental values of low-and high-lying collective states but we also obtain fair agreement with the data of non-collective low-lying states that are strongly influenced by the particle-phonon coupling.  相似文献   
42.
2 Σ+) was measured in a low-pressure H2/O2 flame for three rotational levels of OH (v=1). Rate coefficients for collisions with H2O and N2 were determined. At 1600 K, kVET (N2) is (in 10-11 cm3s-1) 10.1±2, 6.1±1.8, and 3.8±1.3 for N=0, 5, and 13, respectively. The kVET (H2O) is <1.1±1.8. The kQ (N2) is <2.4±8 for both vibrational levels. The kQ (H2O) in v=1 is 59.1±6.5, 54.7±6.4, and 54.9±6.6 for N=0, 5, and 13, respectively, and, determined indirectly, 74.6±10.4, 70.6±10.3, and 63.4±7.3 for N=0, 5, and 13 in v=0. A multi-level model of OH population dynamics, which is being developed for the quantitative simulation of experimental LIF spectra, was extended to include VET. It was attempted to simulate state-to-state-specific VET coefficients for N2 collisions. From these simulations it appears that angular momentum conservation does not determine the N dependence of the vibrational relaxation step. Received: 9 September 1996/Revised version: 6 January 1997  相似文献   
43.
By means of schlieren techniques the discharge characteristics of a 1 kJ plasma focus device were investigated. Different inner electrodes were used with diameters ranging from 4 mm to 10 mm and the working gases were hydrogen and neon. A spatial resolution in the m region and a temporal resolution in the ps region could be achieved using a mode-locked dye laser as schlieren light source. During the run-down and collapse phase of the discharge the spatially and temporally resolved electron density was determined from the schlieren pictures by means of numerical simultations of the beam deflection by the plasma. During the focus phase the temporal development of the plasma could be observed.  相似文献   
44.
We report on the experimental observation of optical phase conjugation using surface plasma waves in two different configurations: one involving four surface plasma waves and the other one involving two surface pump waves and bulk probe and conjugate waves. The major nonlinear contribution comes from heating of the metal film. In a related experiment, we have also observed the coupling of a bulk probe wave to the corresponding surface wave through the grating created by two counter-propagating surface plasma waves. In this case, we could observe the creation of surface acoustical waves.  相似文献   
45.
This report summarizes several recent applications of quantitative laser-induced fluorescence techniques for the determination of species concentrations and temperature in combustion processes. Several lines of further development are discussed.  相似文献   
46.
A reduced dimensionality model is used to study the reaction OO O 3 ( X1A1 ) + O( 3 P ) by means of time-dependent and time-independent quantum-mechanical methods. State-selected probabilities and rate constants are obtained for the reactive process as well as for the inelastic collision in which the vibrationally excited oxygen loses one or more quanta. It is found that the experimentally observed jump in depletion rates above a critical value of v could be partially explained by the vibrational relaxation rather than reaction. Reaction only becomes important for relatively high translational energies and therefore the calculated rates are too small at the temperatures of interest. It is concluded, however, that the reaction saddle point region in the potential energy surface plays a crucial role in the enhancement of vibrational relaxation. Received: 3 February 1998 / Revised: 27 March 1998 / Accepted: 15 May 1998  相似文献   
47.
CARS spectra of the N2 Q-branch up to 2500 bar and 700 K have been measured. Calculated spectra based on theoretical models show significant disagreement with measured spectra above 300 bar so that CARS temperature measurements are in error by 130 K at 700 K and –150 K at 295 K. The spectral shift of the Q-branch reaches an asymptotic value corresponding to that measured in liquid nitrogen.  相似文献   
48.
A quantum mechanical investigation of vibrational and rotational energy transfer in cold and ultra cold collisions of CH+ with 3He and 4He atoms is presented. Ab initio potential energy calculations are carried out at the BCCD(T) level and a global 3D potential energy surface is obtained using the Reproducing Kernel Hilbert Space (RKHS) method. Close coupling scattering calculations using this surface are performed at collision energy ranging from 10-6 to 2000 cm-1. In the very low collision energy limit, the vibrational and rotational quenching cross sections of CH+ in collisions with He are found to be of the same order of magnitude. This unusual result is attributed to the large angular anisotropy of the intermolecular potential and to the unusually small equilibrium value of the Jacobi R coordinate of the He–CH+ complex. As for the He–N2 + collision, we also find a strong isotope effect in the very low collision energy range which is analyzed in terms of scattering length and the differences between these two collisions are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号