首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4027篇
  免费   179篇
  国内免费   454篇
化学   2184篇
晶体学   22篇
力学   29篇
综合类   1篇
数学   10篇
物理学   2414篇
  2024年   6篇
  2023年   83篇
  2022年   53篇
  2021年   76篇
  2020年   60篇
  2019年   71篇
  2018年   81篇
  2017年   76篇
  2016年   106篇
  2015年   106篇
  2014年   132篇
  2013年   235篇
  2012年   150篇
  2011年   277篇
  2010年   179篇
  2009年   270篇
  2008年   251篇
  2007年   339篇
  2006年   305篇
  2005年   196篇
  2004年   187篇
  2003年   147篇
  2002年   131篇
  2001年   124篇
  2000年   138篇
  1999年   129篇
  1998年   131篇
  1997年   88篇
  1996年   58篇
  1995年   62篇
  1994年   59篇
  1993年   55篇
  1992年   34篇
  1991年   34篇
  1990年   30篇
  1989年   16篇
  1988年   22篇
  1987年   25篇
  1986年   23篇
  1985年   22篇
  1984年   12篇
  1983年   7篇
  1982年   12篇
  1981年   13篇
  1980年   11篇
  1978年   8篇
  1977年   6篇
  1976年   5篇
  1974年   5篇
  1973年   4篇
排序方式: 共有4660条查询结果,搜索用时 31 毫秒
931.
Two non-fullerene small molecules, BT-C6 and BT-C12, based on the vinylene-linked benzothiadiazole- thiophene(BT) moiety flanked with 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile have been synthesized and characterized by solution/thin film UV-Vis absorption, photoluminescence(PL), and cyclic voltammetry(CV) measurements. The two molecules show intense absorption bands in a wide range from 300 nm to 700 nm and low optical bandgaps for BT-C6(1.60 eV) and for BT-C12(1.67 eV). The lowest unoccupied molecular orbital(LUMO) levels of both the molecules are relatively higher than that of [6,6]-phenyl C61 butyric acid methyl ester(PCBM), promising high open circuit voltage(Voc) for photovoltaic application. Bulk heterojunction(BHJ) solar cells with poly(3-hexylthiophene) (P3HT) as the electron donor and the two molecules as the acceptors were fabricated. Under 100 mW/cm2 AM 1.5 G illumination, the devices based on P3HT:BT-C6(1:1, mass ratio) show a power conversion efficiency(PCE) of 0.67%, a short-circuit current(Jsc) of 1.63 mA/cm2, an open circuit voltage(Voc) of 0.74 V, and a fill factor(FF) of 0.56.  相似文献   
932.
The field of metallurgy has greatly benefited from the development of electron microscopy over the last two decades. Scanning electron microscopy (SEM) has become a powerful tool for the investigation of nano- and microstructures. This article reviews the complete set of tools for crystallographic analysis in the SEM, i.e., electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), and electron channeling contrast imaging (ECCI). We describe recent relevant developments in electron microscopy, and discuss the state-of-the-art of the techniques and their use for analyses in metallurgy. EBSD orientation measurements provide better angular resolution than spot diffraction in TEM but slightly lower than Kikuchi diffraction in TEM, however, its statistical significance is superior to TEM techniques. Although spatial resolution is slightly lower than in TEM/STEM techniques, EBSD is often a preferred tool for quantitative phase characterization in bulk metals. Moreover, EBSD enables the measurement of lattice strain/rotation at the sub-micron scale, and dislocation density. TKD enables the transmitted electron diffraction analysis of thin-foil specimens. The small interaction volume between the sample and the electron beam enhances considerably the spatial resolution as compared to EBSD, allowing the characterization of ultra-fine-grained metals in the SEM. ECCI is a useful technique to image near-surface lattice defects without the necessity to expose two free surfaces as in TEM. Its relevant contributions to metallography include deformation characterization of metals, including defect visualization, and dislocation density measurements. EBSD and ECCI are mature techniques, still undergoing a continuous expansion in research and industry. Upcoming technical developments in electron sources and optics, as well as detector instrumentation and software, will likely push the border of performance in terms of spatial resolution and acquisition speed. The potential of TKD, combined with EDS, to provide crystallographic, chemical, and morphologic characterizations of nano-structured metals will surely be a valuable asset in metallurgy.  相似文献   
933.
Sol–gel template method has been used to prepare BaFBr:Eu2+ nanophosphor-SiO2 hybrid entrapped within the nanopores array (of about 200 nm size) of a comercial anodized alumina (AA) membrane. Structural and morphological measurements using electron microscopy (SEM) and X-ray diffraction (XRD) have shown the presence of the BaFBr:Eu2+ nanophosphor in the silica xerogel entrapped within the nanopores array; photoluminescence and X-ray excited luminescence measurements have shown Eu2+ luminescence at 395 nm accompanied by a broad band due to AA membrane. The method assures a relatively uniform spreading of the BaFBr nanophosphor into the AA membrane pores array without the nanoparticles agglomeration. Preliminary imaging tests have shown a spatial resolution in the micrometer range and even in the submicrometer range can be expected. As BaFBr:Eu2+ is a very efficient X-ray phosphor the material might be used as X-ray micro-imaging detector.  相似文献   
934.
935.
Miniature tensile-test specimens of soft-annealed, weakly textured AA3003 aluminum sheet in 0.9 mm thickness were deformed until fracture inside a scanning electron microscope. Tensile strength measured by the miniature tensile test stage agreed well with the tensile strength by regular tensile testing. Strain over the microscope field of view was determined from changes in positions of constituent particles. Slip lines were visible in secondary electron images already at 0.3% strain; activity from secondary slip systems became apparent at 2% strain. Orientation rotation behavior of the tensile load axis with respect to the crystallographic axes agreed well with previously reported trends for other aluminum alloys. Start of the fracture and tensile crack propagation were documented in secondary electron images. The region of fracture nucleation included and was surrounded by many grains that possessed high Schmid factors at zero strain. Crystal lattice rotation angles in the grains surrounding the initial fracture zone were higher than average while rotations inside the initial fracture zone were lower than average for strains from zero to 31%. The orientation rotation behavior of the tensile load axes of the grains around the fracture zone deviated from the average behavior in this material.  相似文献   
936.
Experimental and theoretical results showing up effects of metal powder radiation processing, such as powder grinding, chemical refinement, and changes in powder particle surface state, are discussed. It is shown that preliminary irradiation of metal powders leads to profound structural alterations at all further stages of their processing by conventional methods of powder metallurgy and eventually effects the properties of the resulting product.  相似文献   
937.
Although a circuit model of the previously developed cutoff probe for plasma diagnostics elucidates the basic physics and contributes to the development of the cutoff probe, a theoretical validation of the circuit model has yet to be accomplished. For theoretical validation, this paper proposes a one-dimensional electrostatic model, or 1dESM, of the cutoff probe, which is based on electrostatic field analysis in a finite two-wire approximation. The transmission spectrum S21 calculated by the 1dESM shows a good agreement with that from a three-dimensional full electromagnetic wave simulation for various electron densities and pressures. Based on the 1dESM, the formation mechanism of the S21 of the cutoff probe was analyzed. Theoretical validation of the circuit model was then achieved by comparing the circuit model with the 1dESM. This paper is believed to contribute to a better understanding of the cutoff probe and to the development of cutoff probe models.  相似文献   
938.
Experimental electron energy-loss spectra are presented for FePO4, LiFePO4 and NaFePO4 from 0 to 80 eV. With the help of the NaFePO4 spectrum in the 50-80 eV range, the double peak observed in LiFePO4 could be ascribed to the presence of FeII and not to the Li K edge, contrary to what was thought previously. Crystal field multiplet calculations confirm this attribution. Using VASP programme based on density functional theory, dielectric response calculations including local field effects in the Hartree approximation are then proven to properly simulate the fine structures due to the lithium K edge. By comparing absolute spectrum intensities, it is shown that the lithium K edge cannot be used to quantify lithium in such compounds. This detailed comparison between theoretical calculations and experimental spectra helps defining the relevant parameters governing intensities in the 50-80 energy range.  相似文献   
939.
Semiconducting boron carbide (B10C2Hx) films have been formed by bombardment of condensed ortho-carborane (closo-1,2-dicarbadodecaborane) multilayers on polycrystalline copper substrates by 200 eV electrons under ultra-high vacuum conditions. The film formation process was characterized by X-ray and ultraviolet photoelectron spectroscopies. Electron bombardment results in the cross-linking of the icosahedral units. The cross-linking is accompanied by a shift in the B(1s) binding energy indicating site-specific cross-linking between two boron sites on adjacent carborane icosahedra. An additional shift in valence band binding energies attributed to the surface photovoltage effect is indicative of the formation of a p-type semiconductor. This is the first report of B10C2Hx formation by electron bombardment of condensed films, and the data indicate that this method is a viable route towards formation of ultra-thin films of tailored composition and cross-linkages for emerging nanoelectronics and sensor applications.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号