首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1656篇
  免费   385篇
  国内免费   237篇
化学   853篇
晶体学   32篇
力学   110篇
综合类   34篇
数学   54篇
物理学   1195篇
  2024年   8篇
  2023年   23篇
  2022年   85篇
  2021年   80篇
  2020年   99篇
  2019年   57篇
  2018年   56篇
  2017年   87篇
  2016年   106篇
  2015年   95篇
  2014年   125篇
  2013年   142篇
  2012年   98篇
  2011年   132篇
  2010年   97篇
  2009年   107篇
  2008年   81篇
  2007年   98篇
  2006年   101篇
  2005年   77篇
  2004年   65篇
  2003年   72篇
  2002年   56篇
  2001年   39篇
  2000年   48篇
  1999年   34篇
  1998年   25篇
  1997年   30篇
  1996年   31篇
  1995年   22篇
  1994年   14篇
  1993年   18篇
  1992年   17篇
  1991年   10篇
  1990年   8篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1982年   4篇
  1980年   3篇
  1979年   5篇
  1975年   1篇
排序方式: 共有2278条查询结果,搜索用时 15 毫秒
81.
A new oligosiloxane derivative (ODCzMSi) functionalized with the well‐known 1,3‐bis(9‐carbazolyl)benzene (mCP) pendant moiety, directly linked to the silicon atom of the oligosiloxane backbone, has been synthesized and characterized. Compared to mCP, the attachment of the oligosiloxane chain significantly improves the thermal and morphological stabilities with a high decomposition temperature (Td=540 °C) and glass transition temperature (Tg=142 °C). The silicon–oxygen linkage of ODCzMSi disrupts the backbone conjugation and maintains a high triplet energy level (ET=3.0 eV). A phosphorescent organic light‐emitting diode (PhOLED) using iridium bis(4,6‐difluorophenyl)pyridinato‐N,C2 picolinate (FIrpic) as the emitter and ODCzMSi as the host shows a relatively low turn‐on voltage of 5.0 V for solution‐processed PhOLEDs, maximum external quantum efficiency of 9.2 %, and maximum current efficiency of 17.7 cd A?1. The overall performance of this device is competitive with the best reported solution‐processed blue PhOLEDs. Memory devices using ODCzMSi as an active layer exhibit non‐volatile write‐once read‐many‐times (WORM) characteristics with high stability in retention time up to 104 s and a low switch on voltage. This switching behaviour is explained by different stable conformations of ODCzMSi with high or low conductivity states which are obtained under the action of electric field through a π–π stacking alignment of the pendant aromatic groups. These results with both PhOLEDs and memory devices demonstrate that this oligosiloxane–mCP hybrid structure is promising and versatile for high performance solution‐processed optoelectronic applications.  相似文献   
82.
聚乙烯咔唑(PVK)中掺入富勒烯(C60)的重量比从0%到10%变化,以研究在空穴传输层中掺杂C60后对量子点电致发光器件性能的影响。掺入C60后的PVK薄膜在氧化铟锡(ITO)基底上均方根粗糙度从3 nm降至1.6 nm。另外,掺入C60后有利于空穴的注入和传输,改善器件中电子和空穴的平衡,提高了器件的效率。  相似文献   
83.
Low-energy inverse photoelectron spectroscopy (LEIPS) and ultraviolet photoelectron spectroscopy (UPS) incorporated into the multitechnique XPS system were used to probe the ionization potential and the electron affinity of organic materials, respectively. By utilizing gas cluster ion beam (GCIB), in situ analyses and depth profiling of LEIPS and UPS were also demonstrated. The band structures of the 10-nm-thick buckminsterfullerene (C60) thin film on Au (100 nm)/indium tin oxide (100 nm)/glass substrate were successfully evaluated in depth direction.  相似文献   
84.
This work reports a novel fabrication technique for development of channels on paper‐based microfluidic devices using the syringe module of a 3D printing syringe–based system. In this study, printing using polycaprolactone (PCL)‐based ink (Mw 70 000‐90 000) was employed for the generation of functional hydrophobic barriers on Whatman qualitative filter paper grade 1 (approximate thickness of 180 μm and pore diameter of 11 μm), which would effectively channelize fluid flow to multiple assay zones dedicated for different analyte detection on a microfluidic paper‐based analytical device (μPAD). The standardization studies reveal that a functional hydrophilic channel for sample conduction fabricated using the reported technique can be as narrow as 460.7 ± 20 μm and a functional hydrophobic barrier can be of any width with a lower limit of about 982.2 ± 142.75 μm when a minimum number of two layers of the ink is extruded onto paper. A comparison with the hydrodynamic model established for writing with ink is used to explain the width of the line printed by this system. A fluid flow analysis through a single channel system was also carried out to establish its conformity with the Washburn model, which governs the fluid flow in two‐dimensional μPAD. The presented fabrication technique proves to be a robust strategy that effectively taps the advantages of this 3D printing technique in the production of μPADs with enhanced speed and reproducibility.  相似文献   
85.
In this study, spectroelectrochemical (SPE) studies to monitor the electrochromic properties of electrochemically synthesized sub‐10 nm sized Prussian blue (PB) nanostructures (NSs) are employed. At the beginning the dark blue coloured device, shifts reversibly between translucent and dark‐blue while applying an applied bias between +1 to ?1 V with an opposite polarization. Amine functionalized silicate sol‐gel matrix (SSG) is used as a solid support and stabilizer for electrodepositing highly uniform sub‐10 nm PB NSs. The SSG's film thickness is suitably optimized through suitable controlled experiments. It is found that the SPE behaviour of sub‐10 nm sized PB NSs, suitably followed a colour modulation of PB into Prussian white (PW) and vice‐versa. SPE studies are used to investigate the redox switching between the PB and PW and which are responsible for an electrochromic function of a fabricated electrochromic device (ECD). Fabricated ECD has demonstrated an optical modulation at 680 nm with the moderate coloration efficiency of 115.8 cm2/C. Present study validates the SPE feature of sub‐10 nm PB NSs as an active electrochromic nanomaterial and demonstrating the applicability of SPE technique to investigate the variety of electrochromic nanomaterials, with consequences in both spectral and electrochemically active nanomaterials for electrochromic device applications.  相似文献   
86.
Prussian blue (PB) is an electrochromic material, which can be used as a signal transducer in the formation of optical urea biosensors. The previous researches in electrochromic properties of PB demonstrated the optical PB response to ammonium ions, which occurs when ammonium ions are interacting with PB layer at a constant 0.2 V vs Ag|AgCl|KClsat potential. In this work PB optical dependence on ammonium ions concentration was applied in the formation of electrochromic urea biosensor. Biosensor was formed by modifying the optically transparent indium tin oxide (ITO) coated glass electrode (glass/ITO) with Prussian blue layer and immobilizing urease (glass/ITO/PB‐urease). Calibration curve showed the linear dependency (R2=0.995) between the change of maximal absorbance (ΔA) and urea concentration in concentration range varying from 3 mM to 30 mM. The highest sensitivity (4 ΔA M?1) of glass/ITO/PB‐urease biosensor is in the concentration range from 7 mM to 30 mM. It was determined that working principle of the glass/ITO/PB‐urease biosensor is not related to pH changes occurring during enzymatic hydrolysis of urea.  相似文献   
87.
We propose a straightforward access to a rotating light-emitting device powered by wireless electrochemistry. A magnetic stirrer is used to rotate a light-emitting diode (LED) due to the intrinsic magnetic properties of the tips that contain iron. At the same time, the LED is submitted to an electric field and acts as a bipolar electrode. The electrochemical processes that are coupled on both extremities of the LED drive an electron flow across the device, resulting in light emission. The variation of the LED alignment in time enables an alternating light emission that is directly controlled by the rotation rate. The stirring also enables a continuous mixing of the electrolyte that improves the stability of the output signal. Finally, the LED brightness can readily reveal a change of chemical composition in the electrolyte solution.  相似文献   
88.
Biocatalytic buckypaper electrodes modified with pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and bilirubin oxidase for glucose oxidation and oxygen reduction, respectively, were prepared for their use in a biofuel cell. A small (millimeter-scale; 2×3×2 mm3) enzyme-based biofuel cell was tested in a model glucose-containing aqueous solution, in human serum, and as an implanted device in a living gray garden slug (Deroceras reticulatum), producing electrical power in the range of 2–10 μW (depending on the glucose source). A microelectronic temperature-sensing device equipped with a rechargeable supercapacitor, internal data memory and wireless data downloading capability was specifically designed for activation by the biofuel cell. The power management circuit in the device allowed the optimized use of the power provided by the biofuel cell dependent on the sensor operation activity. The whole system (power-producing biofuel cell and power-consuming sensor) operated autonomously by extracting electrical energy from the available environmental source, as exemplified by extracting power from the glucose-containing hemolymph (blood substituting biofluid) in the slug to power the complete temperature sensor system and read out data wirelessly. Other sensor systems operating autonomously in remote locations based on the concept illustrated here are envisaged for monitoring different environmental conditions or can be specially designed for homeland security applications, particularly in detecting bioterrorism threats.  相似文献   
89.
Zhang  Shicong  Ye  Haonan  Ding  Haoran  Yu  Fengtao  Hua  Jianli 《中国科学:化学(英文版)》2020,63(2):228-236
Dye-sensitized photoelectrochemical tandem cells have shown the promise for light driven hydrogen production from water owing to the low cost,wide absorption spectra in the visible region and ease to process of their constitutive photoelectrode materials.However,most photo-driven water splitting photoelectrochemical cells driven by organic dye sensitized solar cells exhibit unsatisfactory hydrogen evolution rate,primarily attributed to their poor light capturing ability and low photocurrent performance.Here we present the construction of a tandem system consisting of an organic blue-colored S5 sensitizer-based dyesensitized photoelectrochemical cell(DSPEC) wired in series with three spectral-complemental dyes BTA-2,APP-3 and APP-1 sensitizers-based dye-sensitized solar cell(DSC),respectively.The two spectral-complemental chromophores were used in DSC and DSPEC to ensure that the full solar spectrum could be absorbed as much as possible.The results showed that the photocurrent of tandem device was closely related to the open-circuit voltage(Voc) of sensitized DSC,in which the tandem configuration consisting of S5 based DSPEC and BTA-2 based DSC gave the best photocurrent.On this basis,tandem device with the only light energy and no external applied electrical bias was further constructed of BTA-2 based 2-junction DSC and S5 based DSPEC and obtained a photocurrent of 500 μA cm-2 for hydrogen generation.Furthermore,I-/I3-was used as a redox couple between dye regeneration and O2 production on the surface of Pt-IrO2/WO3.The strategy opens up the application of pure organic dyes in DSC/DSPEC tandem device.  相似文献   
90.
微波加热装置工作过程会散发大量的热量,如果不能及时排出,会造成输出功率的下降.本文以九个磁控管加热单元组成的微波加热装置为研究对象,首先提出一种风冷散热结构设计,接着通过Fluent热仿真软件验证结构设计的合理性,然后通过对比分析加热装置进风口位置、面积大小等因素对散热效果的影响,对散热结构进行改进,进一步提高了内部磁...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号