首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1661篇
  免费   382篇
  国内免费   237篇
化学   854篇
晶体学   32篇
力学   110篇
综合类   34篇
数学   54篇
物理学   1196篇
  2024年   8篇
  2023年   23篇
  2022年   85篇
  2021年   80篇
  2020年   100篇
  2019年   58篇
  2018年   56篇
  2017年   87篇
  2016年   106篇
  2015年   95篇
  2014年   125篇
  2013年   142篇
  2012年   98篇
  2011年   132篇
  2010年   97篇
  2009年   107篇
  2008年   81篇
  2007年   98篇
  2006年   101篇
  2005年   77篇
  2004年   65篇
  2003年   72篇
  2002年   56篇
  2001年   39篇
  2000年   48篇
  1999年   34篇
  1998年   25篇
  1997年   30篇
  1996年   31篇
  1995年   22篇
  1994年   14篇
  1993年   18篇
  1992年   17篇
  1991年   10篇
  1990年   8篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1982年   4篇
  1980年   3篇
  1979年   5篇
  1975年   1篇
排序方式: 共有2280条查询结果,搜索用时 12 毫秒
21.
The concept, the present status, key issues and future prospects of a novel hexagonal binary decision diagram (BDD) quantum circuit approach for III–V quantum large-scale integrated circuits (QLSIs) are presented and discussed. In this approach, the BDD logic circuits are implemented on III–V semiconductor-based hexagonal nanowire networks controlled by nanoscale Schottky gates. The hexagonal BDD QLSIs can operate at delay-power products near the quantum limit in the quantum regime as well as in the many-electron classical regime. To demonstrate the feasibility of the present approach, GaAs Schottky wrap gate (WPG)-based single-electron BDD node devices and their integrated circuits were fabricated and their proper operations were confirmed. Selectively grown InGaAs sub-10 nm quantum wires and their hexagonal networks have been investigated to form high-density hexagonal BDD QLSIs operating in the quantum regime at room temperature.  相似文献   
22.
A technique capable of focusing and bending electromagnetic (EM) waves through plasmonic gratings with equally spaced alternately tapered slits has been introduced. Phase resonances are observed in the optical response of transmission gratings, and the EM wave passes through the tuning slits in the form of surface plasmon polaritons (SPPs) and obtains the required phase retardation to focus at the focal plane. The bending effect is achieved by constructing an asymmetric phase front which results from the tapered slits and gradient refractive index (GRIN) distribution of the dielectric material. Rigorous electromagnetic analysis by using the two-dimensional (2D) finite difference time domain (FDTD) method is employed to verify our proposed designs. When the EM waves are incident at an angle on the optical axis, the beam splitting effect can also be achieved. These index-modulated slits are demonstrated to have unique advantages in beam manipulation compared with the width-modulated ones. In combination with previous studies, it is expected that our results could lead to the realization of ootimum designs for plasmonic nanolenses.  相似文献   
23.
《Current Applied Physics》2020,20(5):720-737
Roll-to-roll (R2R) production is an innovative approach and is fast becoming a very popular industrial method for high throughput and mass production of solar cells. Replacement of costly indium tin oxide (ITO), which conventionally has served as the transparent electrode would be a great approach for roll to roll production of flexible cost effective solar cells. Indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) are brittle and ultimately limit the device flexibility. Perovskite solar cells (PSCs) have been the centre of photovoltaic research community during the recent years owing to its exceptional performance and economical prices. The best reported PSCs fabricated by employing mesoporous TiO2 layers require elevated temperatures in the range of 400–500 °C which limits its applications to solely glass substrates. In such a scenario developing flexible PSCs technology can be considered a suitable and exciting arena from the application point of view, them being flexible, lightweight, portable, and easy to integrate over both small, large and curved surfaces.  相似文献   
24.
We have synthesized CdS nanocrystals (NCs) by a microwave activated method. CdSO4 and Na2S2O3 were used as the precursors and thioglycolic acid (TGA) was used as capping agent molecule. The aqueous synthesis was based on the heat sensitivity of Na2S2O3. In this method, microwave irradiation creates the activation energy for dissociation of Na2S2O3 and leads to the CdS NCs formation. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses demonstrated hexagonal phase CdS NCs with an average size around 3 nm for sample prepared at 5 min irradiation time. A band gap range of 3.38-2.89 eV was possible only by increasing the microwave irradiation time, corresponding to a 2.7-3.7 nm size. Photoluminescence (PL) spectra showed a white emission between 400 and 750 nm. The best attained PL quantum yield (QY) of the NCs was about 10%. Synthesized NCs were used as emissive layer in a light emitting device (LED) with ITO/PEDOT:PSS/PVK/CdS-NCs/AL structure. Turn on voltage of fabricated device was about 7 V. The CIE color coordinate of the LED at (0.34, 0.43) demonstrated a near white light LED with an emission on green-yellow boundary of white.  相似文献   
25.
研究了基于新型骨架7-(9H-carbazol-9-yl)-N,N-diphenyl-9,9’-spirobi[fluoren]-2-amine(CzFA)双极性主体材料的红色电致磷光器件的光电特性。研究结果表明:将红色磷光染料iridium(Ⅲ)bis[2-methyldibenzo-(f,h)quinoxaline](acetylacetonate)(Ir(MDQ)2(acac))掺杂到CzFA主体材料中,以其制备的电致发光器件具有优良的特性,最大电流效率为27.8 cd/A,最大功率效率为21.8 lm/W,最大功率效率几乎是先前报道的主体材料为CBP器件(13.7 lm/W)的1.6倍。这种咔唑-螺二芴-二胺基团所组成的双极性主体材料对于提升磷光器件的性能起到了重要的作用。  相似文献   
26.
With the help of adaptive optics(AO) technology, cellular level imaging of living human retina can be achieved.Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely.Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator(LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with-8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully.  相似文献   
27.
利用两组串联五环谐振器以及它们与两信道波导的交叉耦合作用,优化设计并模拟了一种超低串扰2×2新型聚合物电光开关.为了表征器件的输出光功率特性,给出了器件结构、分析理论和相关公式.为了在下行端口(drop端口)得到箱型光谱响应以及极低的串扰和插入损耗,优化了微环谐振级数和耦合间距.对器件输出光功率和输出光谱的模拟分析结果显示,器件交叉和直通态间的切换电压为4V,交叉和直通态下两端口间的串扰分别为-66dB和-54.7dB,插入损耗分别为2.34dB和0.24dB.在1GHz方波信号作用下,器件drop端口的上升和下降时间分别为15ps和90ps.由于聚合物微环的弯曲半径仅为19.45μm,因此该器件具有超紧凑的尺寸,其长度和宽度仅为0.407mm,约为马赫-曾德尔干涉仪或者定向耦合器等一般结构聚合物电光开关长度的1/10.依赖于小的封装尺寸和极低的串扰,该器件可以高密度地集成在光电子芯片上,在光片上网络中光信号的控制方面具有潜在的应用.  相似文献   
28.
This paper discloses results of measuring the effective radiating area (AER) and the beam non-uniformity ratio (RBN) for US transducers at 5.0 MHz. Measurements were carried out at Laboratory of Ultrasound of the Brazilian National Institute of Metrology, Standardization, and Industrial Quality. As reliability proof of system’s adequacy, uncertainties were assessed. The calculation protocol was developed based on standard IEC 61689:2007. Type A uncertainty was estimated after four repetitions of the full procedure for the determination of AER and RBN, and Type B uncertainty was estimated from the mathematical model for both calculations, obtained from IEC 61689:2007 and the guide to the expression of uncertainty in measurement. The procedure presented herein represents the state of the art regarding metrology for testing therapeutic ultrasound devices, and its application results in fundamental aspects to support their evaluation regarding quality assurance, for instance, for a certification process due safety and performance.  相似文献   
29.
White organic light-emitting device was achieved through an incorporation of yellow YAG nanophosphors into blue polyfluorene emitting layer: electrode/YAG@polyfluorene/hole-transport/injection layers/ITO glass. The brightness of the proposed device (230 cd/m2 at 30 V) was enhanced by a factor of about two in comparison with that of phosphor-free reference device. It is attributed to the increased local electric field caused by bumps of nanophophors on the emitting layer. With increase of voltage, the blue-green emission decreased whereas the yellow emission increased. It is due to the effective energy transfer from the blue-green to the yellow bands.  相似文献   
30.
We have studied the electrical transport properties of two types of devices utilizing metal-oxide semiconductor nano-particles, Cu2O and Fe2O3. The metal-oxide nano-particles are embedded in a polyimide matrix through chemical reaction between the metal thin film and polyamic acid as a precursor of polyimide. To test the electron tunneling via nano-particles, Au nano-electrodes are fabricated on a SiO2/Si substrate with a 30 nm gap by electron-beam lithography. A single electron tunneling behavior was apparent in the devices with Cu2O nano-particle inserted into the nano-gap electrodes. Also, a memory effect was measured in a floating-gated memory device structure with Fe2O3 nano-particles embedded in a polyimide matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号