首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   8篇
  国内免费   68篇
化学   175篇
力学   1篇
物理学   21篇
  2024年   1篇
  2023年   25篇
  2022年   17篇
  2021年   21篇
  2020年   24篇
  2019年   11篇
  2018年   7篇
  2017年   9篇
  2016年   12篇
  2015年   10篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   7篇
  2009年   7篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2003年   6篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有197条查询结果,搜索用时 125 毫秒
51.
This study describes the electrochemical, in situ spectroelectrochemical, in situ electrocolorimetric and electrocatalytic characterization of metallophthalocyanines bearing four dioctylaminocarbonyl biphenyloxy groups (MPc's). While CoPc gives both metal‐based and ring‐based redox processes, ZnPc and CuPc show only ring‐based reduction and oxidation processes. In‐situ electrocolorimetric method was applied to investigate color of the electrogenerated anionic and cationic forms of the complexes. Perchloric acid titrations monitored by cyclic voltammetry and spectrophotometry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CuPc having inactive metal center incorporated into a Nafion film on GCE decreases overpotential of the electrode for H+ reduction in aqueous solution.  相似文献   
52.
This study reports the sonochemical synthesis of samarium tungstate nanoparticles (SWNPs) for applications in electrochemical sensors. The synthesis process is based on a precipitation reaction, which was investigated by ultrasound and compared with the effect of stirring. A bath sonicator operated at a frequency and power of 37/100 kHz and ~60 W, respectively, was employed to prepare the material. The shock waves efficiently irradiated the reaction conditions as much as possible, resulting in the good crystallinity of the monoclinic phase of the SWNPs, which was confirmed by XRD analysis. The surface morphology and structural composition was further evaluated by HRTEM, EDS and XPS. The good crystallinity and uniform distribution of elements in the nanoparticles were confirmed. The performance of the SWNPs to electrochemically sense nilutamide (NLT) was studied, which revealed a good electrochemical signal. As a result, the SWNPs were applied to an electrode material for the detection of NLT. This study revealed the excellent activity of the SWNPs for NLT detection, resulting in a low detection limit (0.0026 µM) and good linear range (0.05–318 µM). Furthermore, the results show appreciable analytical performances, which could be applied to electrochemical anti-androgen drug nilutamide sensors.  相似文献   
53.
Efficient carbon-based nitrogen-doped electrocatalysts derived from waste biomass are regarded as a promising alternative to noble metal catalysts for oxygen reduction reaction (ORR), which is crucial to fuel cell performance. Here, coconut palm leaves are employed as the carbon source and a series of nitrogen-doped porous carbons were prepared by virtue of a facile and mild ultrasound-assisted method. The obtained carbon material (ANDC-900-10) conveys excellent pH-universal catalytic activity with onset potentials (Eonset) of 1.01, 0.91 and 0.84 V vs. RHE, half-wave potentials (E1/2) of 0.87, 0.74 and 0.66 V vs. RHE and limiting current densities (JL) of 5.50, 5.45 and 4.97 mA cm−2 in alkaline, neutral and acidic electrolytes, respectively, prevailing over the commercial Pt/C catalyst and, what's more, ANDC-900-10 displays preeminent methanol crossover resistance and long-term stability in the broad pH range (0–13), thanks to its abundant hierarchical nanopores as well as effective nitrogen doping with high-density pyridinic-N and graphitic-N. This work provides sonochemical insight for underpinning the eco-friendly approach to rationally designing versatile metal-free carbon-based catalysts toward the ORR at various pH levels.  相似文献   
54.
高性能铂基电催化剂的高效合成和筛选对于加速其在各个领域的进一步发展和应用具有重要意义。微流控高通量技术在铂基电催化剂的合成参数优化应用方面具有巨大的潜力。然而,缺少性能评估的微流控高通量合成无法最大限度地发挥其优势。在这项工作中,我们构建了将材料的高通量合成与高通量筛选相结合的多功能平台。该平台的微流控芯片可以生成三种不同前驱体金属离子的20级浓度梯度。微反应器阵列具有100个微通道,用于材料合成和电化学表征。利用该平台我们合成了5组铂基三元电催化剂(共计100种不同的组分),并进行了电化学表征,直接确定了Pt基三元电催化剂对析氧反应的最佳组成。这表明我们所构建微流控高通量平台具有高效性和灵活性,可大大缩短了新材料开发和材料性能优化的周期。  相似文献   
55.
采用两步热解法, 用尿素掺杂氧化石墨烯(GO)得到N掺杂的还原氧化石墨烯(N-RGO), 通过控制反应温度, 制备了具有不同电催化活性的N掺杂的还原氧化石墨烯. 透射电子显微镜(TEM)和扫描电子显微镜(SEM)结果显示, 制得的氮掺杂石墨烯(nG)表面褶皱和重叠增加. X射线光电子能谱(XPS)证明, 氮元素以吡啶N、 吡咯N和石墨化的N 3种形式掺杂在石墨烯中, 最高摩尔分数为6.6%. 通过循环伏安(CV)和旋转圆盘电极(RDE)测试了nG的电化学性能, 结果表明, 在酸性电解质中对氧还原(ORR)有较高的催化活性, 起始电位在0.1 V左右, 电催化还原氧气时主要为四电子反应, 且相对商用的Pt/C催化剂有更好的电化学稳定性, 其中第一步热解温度为200℃制得的nG催化性能最好.  相似文献   
56.
Rare earth cuprates as electrocatalysts for methanol oxidation   总被引:9,自引:0,他引:9  
A series of rare earth cuprates with overall composition Ln2−xMxCu1−yMy′O4−δ (where Ln=La and Nd; M=Sr, Ca and Ba; M′=Ru and Sb: 0.0≤x≤0.4 and y=0.1) have been tested as anode electrocatalysts for methanol oxidation. The evaluation of electrode kinetic parameters was made galvanostatically. The catalyst characterization was carried out by specific conductivity measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Iodometry. These materials exhibit significant activity for methanol oxidation at higher potentials. The linear correlation between Cu(3+) content and methanol oxidation activity suggests that the active sites for adsorption of methanol is Cu(3+). The methanol oxidation onset potential depends on the ease of Cu(2+)→Cu(3+) oxidation reaction. These materials show better tolerance towards the poisoning by the intermediates of methanol oxidation compared to that of conventional noble metal electrocatalysts (supported and bulk). The lattice oxygen in these oxides could be considered as active oxygen to remove CO intermediates of methanol oxidation reaction.  相似文献   
57.
Cost and durability remain the two major barriers to the widespread commercialization of polymer electrolyte membrane fuel cell (PEMFC)-based power systems, especially for the most impactful but challenging fuel cell electric vehicle (FCEV) application. Commercial FCEVs are now on the road; however, their PEMFC systems do not meet the cost targets established by the U.S. Department of Energy, primarily due to the high platinum loading needed on the cathode to achieve the requisite performance and lifetime. While the activities of a number of commercial Pt-based alloy cathode catalysts exceed the beginning-of-life (BOL) targets, these activities, and the overall cathode performance, degrade via a variety of mechanisms described herein. Degradation is mitigated in current FCEVs by utilizing a cathode catalyst with a lower BOL activity (e.g., much lower transition metal alloy content and larger BOL nanoparticle size), necessitating higher catalyst loadings, and through the utilization of system controls that avoid conditions known to exacerbate degradation processes, such as limiting the fuel cell stack voltage range. The design and development of active and robust materials and eliminating the need for vehicle mitigation strategies would greatly simplify the operating system, allowing for greater transient operation, avoiding large hybridization, and curtailing of fuel cell power. Although system mitigation strategies have provided the near-term pathway for FCEV commercialization, material-specific solutions are required to further reduce costs and improve operability and efficiency. Future material developments should focus on stabilization of the electrode structure and minimization of the catalyst particle susceptibility to dissolution caused by oxide formation and reduction over PEMFC cathode-relevant operating potentials plus minimization of support corrosion. Ex situ accelerated stress tests have provided insight into the processes responsible for material and performance degradation and will continue to provide useful information on the relative stability of materials and benchmarks for robust and stable materials-based solutions not requiring system mitigation strategies to achieve adequate lifetime.  相似文献   
58.
We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu–Ru) nanoshells, which exhibited decent sensing characteristics. The hAu–Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu–Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu–Ru loaded on GC electrode (hAu–Ru/GC) showed sensitivity of 426 μA mM−1 cm−2 (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu–Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.  相似文献   
59.
Developing high activity catalysts for hydrogen oxidation reaction(HOR)under alkaline condition remains a challenge in the exchange membrane fuel cell(AEMFC).Herein,we report that the activity of carbon-supported platinum(Pt/C)towards the hydrogen oxidation reaction(HOR)in alkaline media can be remarkably enhanced by simple immersion of Pt/C in nickel chloride solution.The adsorption of hydrogen on the catalyst surface is weakened by modification of nickel.The HOR activity on the Pt/C after immersion possesses an excellent mass current density of 33.4 A/gmetal,which is 18%higher than that(28.3 A/gmetal)on Pt/C.  相似文献   
60.
A facile template together with doping strategy is presented to fabricate Cu2+-doped polypyrrole (Cu2+/PPy) nanotubes (NTs) as efficient mimicking peroxidase and electrocatalyst. PPy NTs were first prepared using electrospun polyacrylonitrile nanofibers as templates and subsequently doped with Cu2+ via a simple immersion strategy. The as-prepared Cu2+/PPy NTs not only exhibit an outstanding peroxidase-like catalytic efficiency but also possess an excellent electrocatalytic activity, which is used for the detection of glucose, displaying a great promise for biosensing applications. The good enzyme-like and electrochemical performances of Cu2+/PPy NTs are owing to the reduced Fermi level compared with bare PPy NTs, which is beneficial for promoting the electron transfer to the substrate. The novel Cu2+/PPy NTs are a novel type of enzyme mimics and electrocatalysts for potential bright applications in biotechnology and environment science.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号